Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2020; 66(6): 3-12


EFFECT OF CALCIUM LOAD ON HEART FUNCTION, MPTP OPENING IN SITU AND UCP2/3 MRNA EXPRESSION IN THE HEART OF TRAINED RATS

Yu.V. Goshovska, N.A. Strutynska, V.F. Sagach

    О.О. Bogomoletz Institute of Physiology of NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz66.06.003


Abstract

We have studied the effect of calcium load (1.7 to 15 mmol/l in perfusate) on isolated heart function, mitochondrial factor release (as a marker of mitochondrial permeability transition pore, MPTP), and cardiac uncoupling proteins (UCP2/3) mRNA expression in untrained and trained rats (swimming for 4 weeks). It was found that the improvement in the isolated heart function of trained rats was accompanied by an increase in the expression of UCP3, but not UCP2. A gradual increase of the calcium content in the perfusate led to an increase in contractile function, more pronounced in trained rats. However, 10 mmol/l and higher concentration of calcium led to arrhythmia and drastic decrease in contractility of isolated heart more obvious in untrained rats. Swimming course prevented the calcium-induced release of mitochondrial factor exerting a stabilizing effect on mitochondrial membranes which was, however, diminished by a nitric oxide synthesis blocker (L-NAME). We have found that UCPs genes expression is calcium-sensitive: an increase in UCP3 mRNA at 5 mmol of calcium and a sharp decrease in UCP2/3 expression at 12.5 mmol/l of calcium in perfusate in both trained and untrained rats indicating the participation of UCPs in the regulation of calcium homeostasis. Our data suggest that the calcium load may serve as a test for in situ MPTP titration. Activation of UCPs together with up-regulated nitric oxide may play a protective role against increasing extracellular calcium inhibiting MPTP formation during physical trainings.

Keywords: heart; nitric oxide; calcium load; mitochondrial uncoupling proteins; mitochondrial permeability transition pore; training; swimming.

References

  1. Boyman L, Williams GSB, Khananshvili D, Sekler I, Lederer WJ. NCLX: The mitochondrial sodium calcium exchanger. J Mol Cell Cardiol. 2013;59:205-13. CrossRef PubMed PubMedCentral
  2. Halestrap AP. A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans. 2010 Aug 1;38(4):841-60. CrossRef PubMed
  3. Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 2020;126(2):280-93. CrossRef PubMed
  4. Ong S-B, Dongworth RK, Cabrera-Fuentes HA, Hausenloy DJ. Role of the MPTP in conditioning the heart translatability and mechanism. Br J Pharmacol. 2015;172(8):2074-84. CrossRef PubMed PubMedCentral
  5. Sagach VF, Scrosati M, Fielding J, Rossoni G, Galli C, Visioli F. The water-soluble vitamin E analogue Trolox protects against ischaemia. reperfusion damage in vitro and ex vivo. A comparison with vitamin E. Pharmacol Res. 2002;45(6):435-9. CrossRef PubMed
  6. Goshovska YV, Fedichkina RA, Korneliuk OI, Sagach VF. Endothelial monocyte-activating polypeptide-ii and Proemap. P43 diminish isolated heart function disturbances after ischemia-reperfusion. Fiziol Zh. 2018;64(5):7-15. [Ukrainian]. CrossRef
  7. Chorna SV, Talanov SO, Strutynska NA, Vavilova GL, Kotsuruba AV, Gaidai NM, et al. The functional state of the rat heart during ischemia-reperfusion , the sensitivity of calcium-induced mitochondrial permeability transition pore opening and the uncoupling protein 3 expression following long exercise training. Fiziol Zh. 2010;56(1):13-21. [Ukrainian]. CrossRef
  8. Kwong JQ, Molkentin JD. Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab. 2015;21(2):206-14. CrossRef PubMed PubMedCentral
  9. Nadtochiy SM, Nauduri D, Shimanskaya TV, Sagach VF, Brookes PS. Purine release: a protective signaling mechanism of the mitochondrial permeability transition pore in ischemia. Fiziol Zh. 2008;54(6):5-14.
  10. Sahach VF, Vavilova HL, Rudyk OV, Strutyns'ka NA. Release of unidentified substances of mitochondrial origin-evidence of mitochondrial permeability transition pore opening in the heart mitochondria of rats. Fiziol Zh. 2003;49(5):3-12. [Ukrainian].
  11. Azzu V, Jastroch M, Divakaruni AS, Brand MD. The regulation and turnover of mitochondrial uncoupling proteins. Biochim Biophys Acta Bioenerg. 2010;1797(6- 7):785-91. CrossRef PubMed PubMedCentral
  12. Iu.V. Hoshovs'ka. The role of uncoupling proteins in mechanisms of protection from oxidative stress. Fiziol Zh. 2015;61(1):91-101. [Ukrainian]. CrossRef PubMed
  13. Trenker M, Malli R, Fertschai I, Levak-Frank S, Graier WF. Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat Cell Biol. 2007;9(4): 445-52. CrossRef PubMed PubMedCentral
  14. Zhang B-X, Ma X, Zhang W, Yeh C-K, Lin A, Luo J, et al. Polyunsaturated fatty acids mobilize intracellular Ca2+ in NT2 human teratocarcinoma cells by causing release of Ca2+ from mitochondria. Am J Physiol Physiol. 2006;290(5):C1321-33. CrossRef PubMed
  15. Huntgeburth M, Tiemann K, Shahverdyan R, Schlüter K-D, Schreckenberg R, Gross M-L, et al. Transforming growth factor β1 oppositely regulates the hypertrophic and contractile response to β-adrenergic stimulation in the heart. PLoS One. 2011;6(11):e26628. CrossRef PubMed PubMedCentral
  16. Stavinoha MA, RaySpellicy JW, Hart-Sailors ML, Mersmann HJ, Bray MS, Young ME. Diurnal variations in the responsiveness of cardiac and skeletal muscle to fatty acids. Am J Physiol Metab. 2004;287(5):E878-87. CrossRef PubMed
  17. Jiang N, Zhang G, Bo H, Qu J, Ma G, Cao D, et al. Upregulation of uncoupling protein-3 in skeletal muscle during exercise: a potential antioxidant function. Free Radic Biol Med. 2009;46(2):138-45. CrossRef PubMed
  18. Lu Z, Sack MN. ATF-1 Is a Hypoxia-responsive transcriptional activator of skeletal muscle mitochondrial uncoupling protein 3. J Biol Chem. 2008;283(34): 23410-8. CrossRef PubMed PubMedCentral
  19. Zhou M, Lin B-Z, Coughlin S, Vallega G, Pilch PF. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase. Am J Physiol Metab. 2000;279(3):E622-9. CrossRef PubMed
  20. Boss O, Samec S, Desplanches D, Mayet M, Seydoux J, Muzzin P, et al. Effect of endurance training on mRNA expression of uncoupling proteins 1, 2, and 3 in the rat. Material nadiishov do redaktsii 23.09.2020 FASEB J. 1998;12(3):335-9. CrossRef PubMed
  21. Bo H, Jiang N, Ma G, Qu J, Zhang G, Cao D, et al. Regulation of mitochondrial uncoupling respiration during exercise in rat heart: Role of reactive oxygen species (ROS) and uncoupling protein 2. Free Radic Biol Med. 2008;44(7):1373-81. CrossRef PubMed
  22. Yan Y, Wei C, Zhang W, Cheng H, Liu J. Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sin. 2006;27(7):821-6. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.