Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2020; 66(4): 85-90


Clarification of the terminology used for description of calcium transport in different cell types

E.E. Saftenku1, J. Sneyd2

  1. Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine
  2. The University of Auckland, Auckland, New Zealand
DOI: https://doi.org/10.15407/fz66.04.085


Abstract

Some basic scientific terms in the field of general physiology that studies intracellular calcium transport have a multitude of definitions in the scientific literature. In this article we analyze these definitional ambiguities and try to clarify some basic terms used for the description of calcium transport in cells. The use of ambiguous scientific terminology and conflicting definitions may be a source of misunderstanding among scientists.

Keywords: Ca2+ transport; flux; common pool models; all-or-none Ca2+ release; definitional ambiguity

References

  1. Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. 2nd ed. New York: John Wiley and Sons; 2006.
  2. Spiegel MR, Lipschutz S, Spellman D. Vector analysis. Schaum's Outline Series. 2nd ed. New York: McGrawHill Education; 2009.
  3. Blumenfeld H, Zablow L, Sabatini B. Evaluation of cellular mechanisms for modulation of calcium transients using a mathematical model of fura-2 Ca2+ imaging in Aplysia sensory neurons. Biophys J. 1992;63: 1146-64. CrossRef
  4. Friel DD. [Ca2+]i oscillations in sympathetic neurons: an experimental test of a theoretical model. Biophys J. 1995;68:1752-66. CrossRef
  5. Hinch R, Greenstein JL, Tanskanen AJ, Xu L, Winslow RL. A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes. Biophys J. 2004;87:3723-36. CrossRef PubMed PubMedCentral
  6. Albrecht MA, Colegrove SL, Hongpaisan J, Pivovarova NB, Andrews SB, Friel DD. Multiple modes of calciuminduced calcium release in sympathetic neurons I: attenuation of endoplasmic reticulum Ca2+ accumulation at low [Ca2+]i during weak depolarization. J Gen Physiol. 2001;118:83-100. CrossRef PubMed PubMedCentral
  7. Williams GS, Chikando AC, Tuan HT, Sobie EA, Lederer WJ, Jafri MS. Dynamics of calcium sparks and calcium leak in the heart. Biophys J. 2011;101:1287-96. CrossRef PubMed PubMedCentral
  8. Gin E, Kirk V, Sneyd J. A bifurcation analysis of calcium buffering. J Theor Biol. 2006;242:1-15. CrossRef PubMed
  9. Colman MA, Pinali C, Trafford AW, Zhang H, Kitmitto A. A computational model of spatio-temporal cardiac intracellular calcium handling with realistic structure and spatial flux distribution from sarcoplasmic reticulum and t-tubule reconstructions. PLOS Comput Biol. 2017;13:e1005714. CrossRef PubMed PubMedCentral
  10. Sobie EA, Dilly KW, dos Santos Cruz J, Lederer WJ, Jafri MS. Termination of cardiac Ca2+ sparks: an investigative mathematical model of calcium-induced calcium release. Biophys J. 2002;83:59-78. CrossRef
  11. Shiferaw Y, Watanabe M, Garfinkel A, Weiss JN, Karma A. Model of intracellular calcium cycling in ventricular myocytes. Biophys J. 2003;85:3666-86. CrossRef
  12. Cannell MB, Kong CH, Imtiaz MS, Laver DR. Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination. Biophys J. 2013;104:2149-59. CrossRef PubMed PubMedCentral
  13. Albrecht MA, Colegrove SL, Friel DD. Differential regulation of ER Ca2+ uptake and release rates accounts for multiple modes of Ca2+-induced Ca2+ release. J Gen Physiol. 2002;119:211-33. CrossRef PubMed PubMedCentral
  14. Patterson M, Sneyd J, Friel DD. Depolarizationinduced calcium responses in sympathetic neurons: relative contributions from Ca2+ entry, extrusion, ER. mitochondrial Ca2+ uptake and release, and Ca2+ buffering. J Gen Physiol. 2007;129:29-56. CrossRef PubMed PubMedCentral
  15. Friel DD, Chiel HJ. Calcium dynamics: analyzing the Ca2+ regulatory network in intact cells. Trends Neurosci. 2008;31:8-19. CrossRef PubMed
  16. Cowan AE, Moraru II, Schaff JC, Slepchenko BM, Loew LM. Spatial modeling of cell signaling networks. Methods Cell Biol. 2012;110:195-221. CrossRef PubMed PubMedCentral
  17. Hernjak N, Slepchenko BM, Fernald K, Fink CC, Fortin D, Moraru II, Watras J, Loew LM. Modeling and analysis of calcium signalling events leading to long-term depression in cerebellar Purkinje cells. Biophys. J. 2005;86:3790-806. CrossRef PubMed PubMedCentral
  18. Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol. Rev. 2005;85:201-79. CrossRef PubMed
  19. Berridge MJ. The inositol trisphosphate. calcium signalling pathway in health and disease. Physiol Rev. 2016;96:1261-96. CrossRef PubMed
  20. Berridge MJ. The endoplasmic reticulum: a multifunctional signalling organelle. Cell Calcium. 2002;32:235-49. CrossRef PubMed
  21. Endo M. Calcium-induced calcium release in skeletal muscle. Physiol Rev. 2009;89:1153-76. CrossRef PubMed
  22. Friel DD, Tsien RW. A caffeine- and ryanodine-sensitive Ca2+ store in bullfrog sympathetic neurones modulates effects of Ca2+ entry on [Ca2+] i.. J Physiol. 1992;450:217-46. CrossRef PubMed PubMedCentral
  23. Callewaert G, Sipido KR, Carmeliet E, Pott L, Lipp P. Intracellular citrate induces regenerative calcium release from sarcoplasmic reticulum in guinea-pig atrial myocytes. Pflügers Arch. 1995;429:797-804. CrossRef PubMed
  24. Usachev YM, Thayer SA. All-or-none Ca2+ release from intracellular stores triggered by Ca2+ influx through voltage-gated Ca2+ channels in rat sensory neurons. J Neurosci. 1997;17:7404-14. CrossRef PubMedCentral
  25. Verkhratsky A. Endoplasmic reticulum calcium homeostasis and neuronal pathophysiology of stroke. In: Annunzio L, editor. New strategies in stroke intervention: Ionic transporters, pumps and new channels. New York: Human Press; 2009. p. 47-64. CrossRef
  26. Saftenku E. Modeling approaches to describe the diversity of the modes of operation of endoplasmic reticulum Ca2+ transport systems in neurons. VII Congress of the Ukrainian Society for Neuroscience; 2017, June 7-11; Kyiv. Abstract book. p. 50-1.
  27. Stern MD. Theory of excitation-contraction coupling in cardiac muscle. Biophys J. 1992;63:497-517. CrossRef
  28. Lockery SR, Goodman MB, Faumont S. First report of action potentials in a C. elegans neuron is premature. Nat Neurosci. 2009;12:365-6. CrossRef PubMed PubMedCentral
  29. Davis RE, Stretton AO. Signaling properties of Ascaris motoneurones: graded active response, graded synaptic transmission, and tonic transmitter release. J Neurosci. 1989;9:415-25. CrossRef PubMedCentral
  30. Goodman MB, Hall DH, Avery L, Lockery SR. Active currents regulate sensitivity and dynamic range in C. elegans neurons, Neuron 1998;20:763-72. CrossRef
  31. Moore JJ, Ravassard PM, Ho D, Acharya L, Kees AL, Vuong C, Mehta MR. Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats. Science 2017;355 (6331):eaaj1497. CrossRef PubMed
  32. Mellem JE, Brockie PJ, Madsen DM, Maricq AV. Action potentials contribute to neuronal signaling in C. elegans. Nat Neurosci. 2008; 11:865-7. CrossRef PubMed PubMedCentral
  33. Ouyang K, Wu C, Cheng H. Ca2+-induced Ca2+ release in sensory neurons: low gain amplification confers intrinsic stability. J. Biol. Chem. 2005;280:15898-902. CrossRef PubMed
  34. Maltsev VA, Yaniv Y, Maltsev AV, Stern MD, Lakatta EG. Modern perspectives on numerical modeling of cardiac pacemaker cells. J Pharmacol Sci. 2014;125:6-38. CrossRef PubMed PubMedCentral
  35. Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution of Ca2+ release units and couplons in skeletal and cardiac muscles. Biophys J. 1999;77:1528-39. CrossRef
  36. Asfaw TN, Tyan L, Glukhov AV, Bondarenko VE. A compartmentalized mathematical model of mouse atrial myocytes. Am J Physiol Heart Circ Physiol. 2020;318:H484-H507. CrossRef PubMed
  37. Heijman J, Erfanian Abdoust P, Voigt N, Nattel S, Dobrev D. Computational models of atrial cellular electrophysiology and calcium handling, and their role in atrial fibrillation. J Physiol. 2016:594:537-53. CrossRef PubMed PubMedCentral
  38. Koiwumäki JT, Korhonen T, Tavi P. Impact of sarcoplasmic reticulum calcium release on calcium dynamics and action potential morphology in human atrial myocytes: a computational study. PLoS Comput Biol. 2011:7:e1001067. CrossRef PubMed PubMedCentral
  39. Voigt N, Heijman J, Wang Q, Chiang DY, Li N, Karck M, Wehrens XHT, Nattel S, Dobrev D. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation. 2013;129:145-56. CrossRef PubMed PubMedCentral
  40. Marchena M, Echebarria B. Computational model of calcium signaling in cardiac atrial cells at the submicron scale. Front Physiol. 2018;9:1760. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.