Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2020; 66(2-3): 93-100


EXPERIMENTAL MODELS IN THE STUDY OF THE MECHANISMS AND CONSEQUENCES OF EPILEPTIC SEIZURES IN NEONATAL PERIOD OF LIFE

A. Romanov, E. Isaeva

  1. Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz66.2-3.093


Abstract

The neonatal period is associated with a high risk of epileptic seizures and epilepsy development. Seizures in early life can significantly interfere with a normal CNS development, cause neural cell death, and negatively impact of the coordination and arrangement of synaptic connections during ontogenesis, which could result in a range of chronic cognitive and behavioral deficits. The negative effects of epileptic seizures on the brain function largely depends on the nature of provoking factors, so to study the cellular and molecular mechanisms underlying development of epileptic seizures in the neonatal period and their consequences, various experimental models have been developed to reproduce pathological changes in animals, caused by specific stimuli. This review highlights the most common experimental models of seizures and epilepsy in the neonatal period, discusses their strength and limitations, and examines pathological, behavioral and neurophysiological similarities and differences between animal models and the equivalent human condition.

Keywords: epilepsy; animal models; aging.

References

  1. Ronen GM, Buckley D, Penney S, Streiner DL. Long-term prognosis in children with neonatal seizures: A populationbased study. Neurology. 2007;69:1816-22. CrossRef PubMed
  2.  
  3. Wei S, Lee W. Comorbidity of childhood epilepsy. J Formos Med Assoc. 2015;114:1031-8. CrossRef PubMed
  4.  
  5. Sogawa Y, Masur D, Dell CO, Moshe SL, Shinnar S. Cognitive outcomes in Children who present with a first unprovoked seizure. Epilepsia. 2011;51:2432-9. CrossRef PubMed PubMedCentral
  6.  
  7. Russ SA, Larson K, Halfon N. A national profile of childhood epilepsy and seizure disorder. Pediatrics. 2012;129:256-64. CrossRef PubMed
  8.  
  9. Marín-Padilla M. Perinatal brain damage, cortical reorganization (acquired cortical dysplasias), and epilepsy. Adv Neurol. 2000;84:153-72.
  10.  
  11. van de Looij Y, Ginet V, Chatagner A, Toulotte A, Somm E, Hüppi PS, et al. Lactoferrin during lactation protects the immature hypoxic-ischemic rat brain. Ann Clin Transl Neurol. 2014;1:955-67. CrossRef PubMed PubMedCentral
  12.  
  13. Sheldon RA, Sedik C, Ferriero DM. Strain-related brain injury in neonatal mice subjected to hypoxia-ischemia. Brain Res. 1998;810:114-22. CrossRef  
  14. Rice JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981;9:131-41. CrossRef PubMed
  15.  
  16. Zhou C, Lippman Bell JJ, Sun H, Jensen FE. HypoxiaInduced neonatal seizures diminish silent synapses and long-term potentiation in hippocampal CA1 neurons. J Neurosci. 2011;31:18211-22. CrossRef PubMed PubMedCentral
  17.  
  18. Jensen F, Tsuji M, Offutt M, Firkusny I, Holtzman D. Profound, reversible energy loss in the hypoxic immature rat brain. Brain Res Dev Brain Res. 1993;73:99-105. CrossRef  
  19. Sanchez RM, Koh S, Rio C, Wang C, Lamperti ED, Sharma D, et al. Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures. J Neurosci. 2001;21:8154-63. CrossRef PubMed PubMedCentral
  20.  
  21. Yang S-N, Huang C-B, Yang C-H, Lai M-C, Chen W-F, Wang C-L, et al. Impaired SynGAP expression and longterm spatial learning and memory in hippocampal CA1 area from rats previously exposed to perinatal hypoxiainduced insults: beneficial effects of A68930. Neurosci Lett .2004;371:73-8. CrossRef PubMed
  22.  
  23. Williams PA, Dou P, Dudek FE. Epilepsy and synaptic reorganization in a perinatal rat model of hypoxia-ischemia. Epilepsia. 2004;45:1210-8. CrossRef PubMed
  24.  
  25. Jensen FE, Gardner GJ, Williams AP, Gallop PM, Aizenman E, Rosenberg PA. The putative essential nutrient pyrroloquinoline quinone is neuroprotective in a rodent model of hypoxic. ischemic brain injury. Neuroscience. 1994;62:399-406. CrossRef  
  26. Hauser WA. The prevalence and incidence of convulsive disorders in children. Epilepsia. 1994;35:1-6. CrossRef PubMed
  27.  
  28. French J a, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer SS, et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol. 1993;34:774-80. CrossRef PubMed
  29.  
  30. Lewis DV, Barboriak DP, MacFall JR, Provenzale JM, Mitchell TV, Van Landingham KE. Do prolonged febrile seizures produce medial temporal sclerosis? Hypotheses, MRI evidence and unanswered questions. Prog Brain Res. 2002;135:263-78. CrossRef  
  31. Fernández G, Effenberger O, Vinz B, Steinlein O, Elger CE, Döhring W, et al. Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis. 1998. Neurology. 2001;57:13-21.
  32.  
  33. Scantlebury MH, Gibbs SA, Foadjo B, Lema P, Psarropoulou C, Carmant L. Febrile seizures in the predisposed brain: a new model of temporal lobe epilepsy. Ann Neurol. 2005;58:41-9. CrossRef PubMed
  34.  
  35. Bender RA, Dubé C, Gonzalez-Vega R, Mina EW, Baram TZ. Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Hippocampus. 2003;13:399-412. CrossRef PubMed PubMedCentral
  36.  
  37. Richichi C, Brewster AL, Bender RA, Simeone TA, Yin HZ, Weiss JH, et al. Mechanisms of seizure-induced 'transcriptional channelopathy' of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. Neurobiol Dis. 2009;29:297-305. CrossRef PubMed PubMedCentral
  38.  
  39. Brewster A, Bender RA, Chen Y, Dube C, Eghbal-Ahmadi M, Baram TZ. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J Neurosci. 2002;22:4591-9. CrossRef PubMed PubMedCentral
  40.  
  41. Raspall-Chaure M, Chin RF, Neville BG, Scott RC. Outcome of paediatric convulsive status epilepticus: a systematic review. Lancet Neurol. 2006;5:769-79. CrossRef  
  42. Kelsey JE, Sanderson KL, Frye CA. Perforant path stimulation in rats produces seizures, loss of hippocampal neurons, and a deficit in spatial mapping which are reduced by prior MK-801. Behav Brain Res. 2000;107:59-69. CrossRef  
  43. Lothman EW, Bertram EH, Kapur J, Stringer JL. Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus. Epilepsy Res. 1990;6:110-8. CrossRef  
  44. Cross DJ, Cavazos JE. Synaptic reorganization in subiculum and CA3 after early-life status epilepticus in the kainic acid rat model. Epilepsy Res. 2007;73:156-65. CrossRef PubMed PubMedCentral
  45.  
  46. Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 2013;37:2887-99. CrossRef PubMed PubMedCentral
  47.  
  48. Covolan L, Mello LE. Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res. 2000;39:133-52. CrossRef  
  49. Curia G, Longo D, Biagini G, Jones RSG, Avoli M. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 172:143-57. CrossRef PubMed PubMedCentral
  50.  
  51. Morrisett RA, Jope RS, Snead OC. Effects of drugs on the initiation and maintenance of status epilepticus induced by administration of pilocarpine to lithium-pretreated rats. Exp Neurol. 1987;97:193-200. CrossRef  
  52. Todorovic MS, Cowan ML, Balint CA, Sun C, Kapur J. Characterization of status epilepticus induced by two organophosphates in rats. Epilepsy Res. 2012;101:268-76. CrossRef PubMed PubMedCentral
  53.  
  54. Haut SR, Velísková J, Moshé SL. Susceptibility of immature and adult brains to seizure effects. Lancet Neurol. 2004;3:608-17. CrossRef  
  55. Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience. 1985;14:375-403. CrossRef  
  56. Represa A, Niquet J, Pollard H, Khrestchatisky M, BenAri Y. From seizures to neo-synaptogenesis: intrinsic and extrinsic determinants of mossy fiber sprouting in the adult hippocampus. Hippocampus. 1994;4:270-4. CrossRef PubMed
  57.  
  58. Epsztein J, Represa A, Jorquera I, Ben-Ari Y, Crépel V. Recurrent mossy fibers establish aberrant kainate receptoroperated synapses on granule cells from epileptic rats. J Neurosci. 2005;25:8229-39. CrossRef PubMed PubMedCentral
  59.  
  60. Rice AC, Floyd CL, Lyeth BG, Hamm RJ, Delorenzo RJ. Status epilepticus causes long-term NMDA receptordependent behavioral changes and cognitive deficits. Epilepsia. 1998;39:1148-57. CrossRef PubMed
  61.  
  62. Sankar R, Shin DH, Liu H, Mazarati A, Pereira de Vasconcelos A, Wasterlain CG. Patterns of status epilepticusinduced neuronal injury during development and long-term consequences. J Neurosci. 1998;18:8382-93. CrossRef PubMed PubMedCentral
  63.  
  64. Sperber EF, Haas KZ, Stanton PK, Moshé SL. Resistance of the immature hippocampus to seizure-induced synaptic reorganization. Brain Res Dev Brain Res. 1991;60:88-93. CrossRef  
  65. Marks JD, Friedman JE, Haddad GG. Vulnerability of CA1 neurons to glutamate is developmentally regulated. Brain Res Dev Brain Res. 1996;97:194-206. CrossRef  
  66. Tandon P, Yang Y, Das K, Holmes GL, Stafstrom CE. Neuroprotective effects of brain-derived neurotrophic factor in seizures during development. Neuroscience. 1999;91:293-303. CrossRef  
  67. Rizzi M, Perego C, Aliprandi M, Richichi C, Ravizza T, Colella D, et al. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis. 2003;14:494-503. CrossRef PubMed
  68.  
  69. Sankar R, Shin DH, Wasterlain CG. GABA metabolism during status epilepticus in the developing rat brain. Brain Res Dev Brain Res. 1997;98:60-4. CrossRef  
  70. Patel M, Li QY. Age dependence of seizure-induced oxidative stress. Neuroscience. 2003;118:431-7. CrossRef  
  71. Sullivan PG, Dubé C, Dorenbos K, Steward O, Baram TZ. Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death. Ann Neurol. 53:711-7. CrossRef PubMed PubMedCentral
  72.  
  73. Brunquell PJ, Glennon CM, DiMario FJ, Lerer T, Eisenfeld L. Prediction of outcome based on clinical seizure type in newborn infants. J Pediatr. 2002;140:707-12. CrossRef PubMed
  74.  
  75. Miller SP, Weiss J, Barnwell A, Ferriero DM, Latal-Hajnal B, Ferrer-Rogers A, et al. Seizure-associated brain injury in term newborns with perinatal asphyxia. Neurology. 2002;58:542-8. CrossRef PubMed
  76.  
  77. McCabe BK, Silveira DC, Cilio MR, Cha BH, Liu X, Sogawa Y, et al. Reduced neurogenesis after neonatal seizures. J Neurosci. 2001;21:2094-103. 48 Riviello P, De Rogalski Landrot I, Holmes GL. Lack of cell loss following recurrent neonatal seizures. Dev Brain Res. 2002;135:10-4. CrossRef PubMed PubMedCentral
  78.  
  79. Isaeva E, Isaev D, Khazipov R, Holmes GL. Selective impairment of GABAergic synaptic transmission in the flurothyl model of neonatal seizures. Eur J Neurosci. 2006;23:1559-66. CrossRef PubMed
  80.  
  81. Isaeva E, Isaev D, Savrasova A, Khazipov R, Holmes GL. Recurrent neonatal seizures result in long-term increases in neuronal network excitability in the rat neocortex. Eur J Neurosci. 2010;31:144-55. CrossRef PubMed PubMedCentral
  82.  
  83. Isaeva E, Isaev D, Khazipov R, Holmes GL. Long-term suppression of GABAergic activity by neonatal seizures in rat somatosensory cortex. Epilepsy Res. 2009;87:286-9. CrossRef PubMed PubMedCentral
  84.  
  85. Liu Z, Yang Y, Silveira DC, Sarkisian MR, Tandon P, Huang LT, et al. Consequences of recurrent seizures during early brain development. Neuroscience. 1999;92:1443-54. CrossRef  
  86. Holmes GL, Sarkisian M, Ben-Ari Y, Chevassus-Au-Louis N. Mossy fiber sprouting after recurrent seizures during early development in rats. J Comp Neurol. 1999;404:537-53. CrossRef  
  87. Holmes GL, Gairsa JL, Chevassus-Au-Louis N, BenAri Y. Consequences of neonatal seizures in the rat: morphological and behavioral effects. Ann Neurol. 1998;44:845-57. CrossRef PubMed
  88.  
  89. Huang L, Cilio MR, Silveira DC, McCabe BK, Sogawa Y, Stafstrom CE, et al. Long-term effects of neonatal seizures: a behavioral, electrophysiological, and histological study. Brain Res Dev Brain Res. 1999;118:99-107. CrossRef  
  90. Karnam HB, Zhou J-L, Huang L-T, Zhao Q, Shatskikh T, Holmes GL. Early life seizures cause long-standing impairment of the hippocampal map. Exp Neurol. 2009;217:378-87. CrossRef PubMed PubMedCentral
  91.  
  92. Kleen JK, Sesqué A, Wu EX, Miller FA, Hernan AE, Holmes GL, et al. Early-life seizures produce lasting alterations in the structure and function of the prefrontal cortex. Epilepsy Behav. 2011;22:214-9. CrossRef PubMed PubMedCentral
  93.  
  94. Kleen JK, Wu EX, Holmes GL, Scott RC, Lenck-Santini P-P. Enhanced oscillatory activity in the hippocampal-prefrontal network is related to short-term memory function after early-life seizures. J Neurosci. 2011;31:15397-406. CrossRef PubMed PubMedCentral
  95.  
  96. Hernan AE, Holmes GL, Isaev D, Scott RC, Isaeva E. Altered short-term plasticity in the prefrontal cortex after early life seizures. Neurobiol Dis .2013;50:120-6. CrossRef PubMed PubMedCentral
  97.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.