|
|
|
|
EXPERIMENTAL MODELS IN THE STUDY OF THE MECHANISMS AND CONSEQUENCES OF EPILEPTIC SEIZURES IN NEONATAL PERIOD OF LIFE
A. Romanov, E. Isaeva
- Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz66.2-3.093
Abstract
The neonatal period is associated with a high risk of epileptic
seizures and epilepsy development. Seizures in early life can
significantly interfere with a normal CNS development, cause
neural cell death, and negatively impact of the coordination
and arrangement of synaptic connections during ontogenesis,
which could result in a range of chronic cognitive and
behavioral deficits. The negative effects of epileptic seizures on
the brain function largely depends on the nature of provoking
factors, so to study the cellular and molecular mechanisms
underlying development of epileptic seizures in the neonatal
period and their consequences, various experimental models
have been developed to reproduce pathological changes in
animals, caused by specific stimuli. This review highlights the
most common experimental models of seizures and epilepsy
in the neonatal period, discusses their strength and limitations,
and examines pathological, behavioral and neurophysiological
similarities and differences between animal models and the
equivalent human condition.
Keywords:
epilepsy; animal models; aging.
References
- Ronen GM, Buckley D, Penney S, Streiner DL. Long-term prognosis in children with neonatal seizures: A populationbased study. Neurology. 2007;69:1816-22.
CrossRef
PubMed
- Wei S, Lee W. Comorbidity of childhood epilepsy. J Formos Med Assoc. 2015;114:1031-8.
CrossRef
PubMed
- Sogawa Y, Masur D, Dell CO, Moshe SL, Shinnar S. Cognitive outcomes in Children who present with a first unprovoked seizure. Epilepsia. 2011;51:2432-9.
CrossRef
PubMed PubMedCentral
- Russ SA, Larson K, Halfon N. A national profile of childhood epilepsy and seizure disorder. Pediatrics. 2012;129:256-64.
CrossRef
PubMed
- Marín-Padilla M. Perinatal brain damage, cortical reorganization (acquired cortical dysplasias), and epilepsy. Adv Neurol. 2000;84:153-72.
- van de Looij Y, Ginet V, Chatagner A, Toulotte A, Somm E, Hüppi PS, et al. Lactoferrin during lactation protects the immature hypoxic-ischemic rat brain. Ann Clin Transl Neurol. 2014;1:955-67.
CrossRef
PubMed PubMedCentral
- Sheldon RA, Sedik C, Ferriero DM. Strain-related brain injury in neonatal mice subjected to hypoxia-ischemia. Brain Res. 1998;810:114-22.
CrossRef
- Rice JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981;9:131-41.
CrossRef
PubMed
- Zhou C, Lippman Bell JJ, Sun H, Jensen FE. HypoxiaInduced neonatal seizures diminish silent synapses and long-term potentiation in hippocampal CA1 neurons. J Neurosci. 2011;31:18211-22.
CrossRef
PubMed PubMedCentral
- Jensen F, Tsuji M, Offutt M, Firkusny I, Holtzman D. Profound, reversible energy loss in the hypoxic immature rat brain. Brain Res Dev Brain Res. 1993;73:99-105.
CrossRef
- Sanchez RM, Koh S, Rio C, Wang C, Lamperti ED, Sharma D, et al. Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures. J Neurosci. 2001;21:8154-63.
CrossRef
PubMed PubMedCentral
- Yang S-N, Huang C-B, Yang C-H, Lai M-C, Chen W-F, Wang C-L, et al. Impaired SynGAP expression and longterm spatial learning and memory in hippocampal CA1 area from rats previously exposed to perinatal hypoxiainduced insults: beneficial effects of A68930. Neurosci Lett .2004;371:73-8.
CrossRef
PubMed
- Williams PA, Dou P, Dudek FE. Epilepsy and synaptic reorganization in a perinatal rat model of hypoxia-ischemia. Epilepsia. 2004;45:1210-8.
CrossRef
PubMed
- Jensen FE, Gardner GJ, Williams AP, Gallop PM, Aizenman E, Rosenberg PA. The putative essential nutrient pyrroloquinoline quinone is neuroprotective in a rodent model of hypoxic. ischemic brain injury. Neuroscience. 1994;62:399-406.
CrossRef
- Hauser WA. The prevalence and incidence of convulsive disorders in children. Epilepsia. 1994;35:1-6.
CrossRef
PubMed
- French J a, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer SS, et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol. 1993;34:774-80.
CrossRef
PubMed
- Lewis DV, Barboriak DP, MacFall JR, Provenzale JM, Mitchell TV, Van Landingham KE. Do prolonged febrile seizures produce medial temporal sclerosis? Hypotheses, MRI evidence and unanswered questions. Prog Brain Res. 2002;135:263-78.
CrossRef
- Fernández G, Effenberger O, Vinz B, Steinlein O, Elger CE, Döhring W, et al. Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis. 1998. Neurology. 2001;57:13-21.
- Scantlebury MH, Gibbs SA, Foadjo B, Lema P, Psarropoulou C, Carmant L. Febrile seizures in the predisposed brain: a new model of temporal lobe epilepsy. Ann Neurol. 2005;58:41-9.
CrossRef
PubMed
- Bender RA, Dubé C, Gonzalez-Vega R, Mina EW, Baram TZ. Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Hippocampus. 2003;13:399-412.
CrossRef
PubMed PubMedCentral
- Richichi C, Brewster AL, Bender RA, Simeone TA, Yin HZ, Weiss JH, et al. Mechanisms of seizure-induced 'transcriptional channelopathy' of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. Neurobiol Dis. 2009;29:297-305.
CrossRef
PubMed PubMedCentral
- Brewster A, Bender RA, Chen Y, Dube C, Eghbal-Ahmadi M, Baram TZ. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J Neurosci. 2002;22:4591-9.
CrossRef
PubMed PubMedCentral
- Raspall-Chaure M, Chin RF, Neville BG, Scott RC. Outcome of paediatric convulsive status epilepticus: a systematic review. Lancet Neurol. 2006;5:769-79.
CrossRef
- Kelsey JE, Sanderson KL, Frye CA. Perforant path stimulation in rats produces seizures, loss of hippocampal neurons, and a deficit in spatial mapping which are reduced by prior MK-801. Behav Brain Res. 2000;107:59-69.
CrossRef
- Lothman EW, Bertram EH, Kapur J, Stringer JL. Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus. Epilepsy Res. 1990;6:110-8.
CrossRef
- Cross DJ, Cavazos JE. Synaptic reorganization in subiculum and CA3 after early-life status epilepticus in the kainic acid rat model. Epilepsy Res. 2007;73:156-65.
CrossRef
PubMed PubMedCentral
- Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 2013;37:2887-99.
CrossRef
PubMed PubMedCentral
- Covolan L, Mello LE. Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res. 2000;39:133-52.
CrossRef
- Curia G, Longo D, Biagini G, Jones RSG, Avoli M. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 172:143-57.
CrossRef
PubMed PubMedCentral
- Morrisett RA, Jope RS, Snead OC. Effects of drugs on the initiation and maintenance of status epilepticus induced by administration of pilocarpine to lithium-pretreated rats. Exp Neurol. 1987;97:193-200.
CrossRef
- Todorovic MS, Cowan ML, Balint CA, Sun C, Kapur J. Characterization of status epilepticus induced by two organophosphates in rats. Epilepsy Res. 2012;101:268-76.
CrossRef
PubMed PubMedCentral
- Haut SR, Velísková J, Moshé SL. Susceptibility of immature and adult brains to seizure effects. Lancet Neurol. 2004;3:608-17.
CrossRef
- Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience. 1985;14:375-403.
CrossRef
- Represa A, Niquet J, Pollard H, Khrestchatisky M, BenAri Y. From seizures to neo-synaptogenesis: intrinsic and extrinsic determinants of mossy fiber sprouting in the adult hippocampus. Hippocampus. 1994;4:270-4.
CrossRef
PubMed
- Epsztein J, Represa A, Jorquera I, Ben-Ari Y, Crépel V. Recurrent mossy fibers establish aberrant kainate receptoroperated synapses on granule cells from epileptic rats. J Neurosci. 2005;25:8229-39.
CrossRef
PubMed PubMedCentral
- Rice AC, Floyd CL, Lyeth BG, Hamm RJ, Delorenzo RJ. Status epilepticus causes long-term NMDA receptordependent behavioral changes and cognitive deficits. Epilepsia. 1998;39:1148-57.
CrossRef
PubMed
- Sankar R, Shin DH, Liu H, Mazarati A, Pereira de Vasconcelos A, Wasterlain CG. Patterns of status epilepticusinduced neuronal injury during development and long-term consequences. J Neurosci. 1998;18:8382-93.
CrossRef
PubMed PubMedCentral
- Sperber EF, Haas KZ, Stanton PK, Moshé SL. Resistance of the immature hippocampus to seizure-induced synaptic reorganization. Brain Res Dev Brain Res. 1991;60:88-93.
CrossRef
- Marks JD, Friedman JE, Haddad GG. Vulnerability of CA1 neurons to glutamate is developmentally regulated. Brain Res Dev Brain Res. 1996;97:194-206.
CrossRef
- Tandon P, Yang Y, Das K, Holmes GL, Stafstrom CE. Neuroprotective effects of brain-derived neurotrophic factor in seizures during development. Neuroscience. 1999;91:293-303.
CrossRef
- Rizzi M, Perego C, Aliprandi M, Richichi C, Ravizza T, Colella D, et al. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis. 2003;14:494-503.
CrossRef
PubMed
- Sankar R, Shin DH, Wasterlain CG. GABA metabolism during status epilepticus in the developing rat brain. Brain Res Dev Brain Res. 1997;98:60-4.
CrossRef
- Patel M, Li QY. Age dependence of seizure-induced oxidative stress. Neuroscience. 2003;118:431-7.
CrossRef
- Sullivan PG, Dubé C, Dorenbos K, Steward O, Baram TZ. Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death. Ann Neurol. 53:711-7.
CrossRef
PubMed PubMedCentral
- Brunquell PJ, Glennon CM, DiMario FJ, Lerer T, Eisenfeld L. Prediction of outcome based on clinical seizure type in newborn infants. J Pediatr. 2002;140:707-12.
CrossRef
PubMed
- Miller SP, Weiss J, Barnwell A, Ferriero DM, Latal-Hajnal B, Ferrer-Rogers A, et al. Seizure-associated brain injury in term newborns with perinatal asphyxia. Neurology. 2002;58:542-8.
CrossRef
PubMed
- McCabe BK, Silveira DC, Cilio MR, Cha BH, Liu X, Sogawa Y, et al. Reduced neurogenesis after neonatal seizures. J Neurosci. 2001;21:2094-103. 48 Riviello P, De Rogalski Landrot I, Holmes GL. Lack of cell loss following recurrent neonatal seizures. Dev Brain Res. 2002;135:10-4.
CrossRef
PubMed PubMedCentral
- Isaeva E, Isaev D, Khazipov R, Holmes GL. Selective impairment of GABAergic synaptic transmission in the flurothyl model of neonatal seizures. Eur J Neurosci. 2006;23:1559-66.
CrossRef
PubMed
- Isaeva E, Isaev D, Savrasova A, Khazipov R, Holmes GL. Recurrent neonatal seizures result in long-term increases in neuronal network excitability in the rat neocortex. Eur J Neurosci. 2010;31:144-55.
CrossRef
PubMed PubMedCentral
- Isaeva E, Isaev D, Khazipov R, Holmes GL. Long-term suppression of GABAergic activity by neonatal seizures in rat somatosensory cortex. Epilepsy Res. 2009;87:286-9.
CrossRef
PubMed PubMedCentral
- Liu Z, Yang Y, Silveira DC, Sarkisian MR, Tandon P, Huang LT, et al. Consequences of recurrent seizures during early brain development. Neuroscience. 1999;92:1443-54.
CrossRef
- Holmes GL, Sarkisian M, Ben-Ari Y, Chevassus-Au-Louis N. Mossy fiber sprouting after recurrent seizures during early development in rats. J Comp Neurol. 1999;404:537-53.
CrossRef
- Holmes GL, Gairsa JL, Chevassus-Au-Louis N, BenAri Y. Consequences of neonatal seizures in the rat: morphological and behavioral effects. Ann Neurol. 1998;44:845-57.
CrossRef
PubMed
- Huang L, Cilio MR, Silveira DC, McCabe BK, Sogawa Y, Stafstrom CE, et al. Long-term effects of neonatal seizures: a behavioral, electrophysiological, and histological study. Brain Res Dev Brain Res. 1999;118:99-107.
CrossRef
- Karnam HB, Zhou J-L, Huang L-T, Zhao Q, Shatskikh T, Holmes GL. Early life seizures cause long-standing impairment of the hippocampal map. Exp Neurol. 2009;217:378-87.
CrossRef
PubMed PubMedCentral
- Kleen JK, Sesqué A, Wu EX, Miller FA, Hernan AE, Holmes GL, et al. Early-life seizures produce lasting alterations in the structure and function of the prefrontal cortex. Epilepsy Behav. 2011;22:214-9.
CrossRef
PubMed PubMedCentral
- Kleen JK, Wu EX, Holmes GL, Scott RC, Lenck-Santini P-P. Enhanced oscillatory activity in the hippocampal-prefrontal network is related to short-term memory function after early-life seizures. J Neurosci. 2011;31:15397-406.
CrossRef
PubMed PubMedCentral
- Hernan AE, Holmes GL, Isaev D, Scott RC, Isaeva E. Altered short-term plasticity in the prefrontal cortex after early life seizures. Neurobiol Dis .2013;50:120-6.
CrossRef
PubMed PubMedCentral
|
|
|
|
|
|
|