Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2020; 66(2-3): 75-82


ADRENERGIC MODULATION OF HIGH VOLTAGE ACTIVATED CALCIUM CHANNELS IN TRIGEMINAL GANGLION NEURONS

М.V. Telka, V.Yu. Maslov, N.S. Veselovsky, S.A. Fedulova

  1. Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz66.2-3.075

Abstract

Sympathetic postganglionic projections to the trigeminal ganglion (TG) modulate electrophysiological characteristics of neurons, including high voltage activated calcium channels. Here, we studied such a modulation using local noradrenaline application on cultured TG neurons. Noradrenaline inhibited current via calcium channels in 91% of the neurons. In 62% of the cells only amplitude of the current decreased, whereas slowing of the kinetics observed in 29%. In the first group, preliminary high-amplitude depolarization did not affect the noradrenaline action, but in the second group, it led to recover of the kinetics and (partially) the amplitude. This suggests that G-protein mediated way of adrenoreceptor-calcium channel interaction is almost absent in the first group, but contribute significantly to the modulation effects in the second group. Simultaneous application of noradrenaline with yohimbine and selective calcium channels subtypes blockers revealed that in TG neurons 60% of adrenergic modulation is realized via α2 receptors, and about half (52%) of the total effect is carried out via N-type of calcium channels, R- and P/Q-channels contribute 35 and 13% respectively.

Keywords: trigeminal ganglion; noradrenaline; modulation; high voltage-activated calcium channels.

References

  1. Matthews B, Robinson PP. The course of post-ganglionic sympathetic fibres distributed with the trigeminal nerve in the cat. J Physiol. 1980;303:391-401. CrossRef PubMed PubMedCentral
  2.  
  3. Kummer W, Gibbins IL, Stefan P, Kapoor V. Catecholamines and catecholamine-synthesizing enzymes in guinea-pig sensory ganglia. Cell and Tissue Res. 1990;261(3):595-606. CrossRef PubMed
  4.  
  5. Telka MV, Maslov VYu, Veselovsky NS, Fedulova SA. Noradrenaline action on electrical activity of cultured trigeminal ganglion neurons. Fiziol Zh. 2019;65(6): 22-9. CrossRef  
  6. Abdulla FA, Smith PA. Ectopic alpha2-adrenoceptors couple to N-type Ca2+ channels in axotomized rat sensory neurons. J Neurosci. 1997;17(5):1633-41. CrossRef PubMedCentral
  7.  
  8. Honma Y, Yamakage M, Ninomiya T. Effects of adrenergic stimulus on the activities of Ca2+ and K+ channels of dorsal root ganglion neurons in a neuropathic pain model. Brain Res. 1999;832(1-2):195-206. CrossRef  
  9. Takeda M, Ikeda M, Tanimoto T, Lipski J, Matsumoto S. Changes of the excitability of rat trigeminal root ganglion neurons evoked by alpha(2)-adrenoreceptors. Neuroscience. 2002;115(3):731-41. CrossRef  
  10. Dolphin AC. G protein modulation of voltage-gated calcium channels. Pharmacol Rev. 2003;55(4):607-27. CrossRef PubMed
  11.  
  12. Currie KP. G protein modulation of CaV2 voltage-gated calcium channels. Channels (Austin). 2010;4(6):497-509. CrossRef PubMed PubMedCentral
  13.  
  14. Strock J, Diverse-Pierluissi MA. Ca2+ channels as integrators of G protein-mediated signaling in neurons. Mol Pharmacol. 2004;66(5):1071-6. CrossRef PubMed
  15.  
  16. Telka MV, Rikhalsky OV, Veselovsky NS. Excitability properties of trigeminal ganglion neurons, Fiziol Zh. 2016; 62(2):24-34. CrossRef PubMed
  17.  
  18. Veselovsky NS, Engert F, Lux HD. Fast local superfusion technique. Pflügers Arch. : Eur J Physiol. 1996;432(2):351-4. CrossRef PubMed
  19.  
  20. Ikeda SR. Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature. 1996;380(6571):255-8. CrossRef PubMed
  21.  
  22. Tedford HW, Zamponi GW. Direct G protein modulation of Cav2 calcium channels. Pharmacol Rev. 2006;58(4):837-62. CrossRef PubMed
  23.  
  24. Bian X, Galligan JJ. Alpha2-adrenoceptors couple to inhibition of R-type calcium currents in myenteric neurons. Neurogastroenterol Motil. 2007;19(10):845-55. CrossRef PubMed PubMedCentral
  25.  
  26. Li C, Horn JP. Differential Inhibition of Ca2+ channels by alpha2-adrenoceptors in three functional subclasses of rat sympathetic neurons. J Neurophysiol. 2008;100(6):3055-63. CrossRef PubMed PubMedCentral
  27.  
  28. Dolphin AC. A short history of voltage-gated calcium channels. Br J Pharmacol. 2006;147 Suppl 1:56-62. CrossRef PubMed PubMedCentral
  29.  
  30. Formenti A, Arrigoni E, Mancia M. Two distinct modulatory effects on calcium channels in adult rat sensory neurons. Biophys J. 1993;64(4):1029-37. CrossRef  
  31. Luebke JI, Dunlap K. Sensory neuron N-type calcium currents are inhibited by both voltage-dependent and -independent mechanisms. Pflügers Arch : Eur J Physiol. 1994;428(5-6):499-507. CrossRef PubMed
  32.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2020.