Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2020; 66(2-3): 21-26


Nonsynaptic epileptiform activity in CA3-CA1 regions of the hippocampus in low-Ca2+ and Cd2+-containing milieu

O.S. Zapukhliak, O.V. Netsyk, D.S. Isaev

  1. Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz66.2-3.021


Abstract

In our work we compare seizure-like-activity in CA1 and CA3 regions of the hippocampus in two common models of nonsynaptic epilepsy in vitro: low-Ca2+ and Cd2+ models. Under low-Ca2+ conditions, the concentration of Ca2+ is insufficient to produce synaptic release. Cd2+ ions block Ca2+ channels, which result in a decrease of intracellular concentration of Ca2+ in presynaptic sites. We found that delay time for seizure appearance in CA1 area is longer than in CA3 in both models. The frequency of epileptic-like discharges in low-Ca2+ model was higher than in Cd2+-model. We did not find a difference in patterns of seizure-like discharges, which suggests a similar mechanism explored in studied models. The difference in distribution and frequency of nonsynaptic seizure-like activity in the hippocampus is discussed in the paper.

Keywords: nonsynaptic epileptiform activity; low-Ca2+ model of seizures; CA3-CA1 regions of the hippocampus; rat brain slices.

References

  1. Bikson M, Baraban SC, Durand DM. Conditions sufficient for nonsynaptic epileptogenesis in the CA1 region of hippocampal slices. J Neurophysiol. 2002;87(1):62-71. CrossRef PubMed
  2.  
  3. Feng Z, Durand DM. Low-calcium epileptiform activity in the hippocampus in vivo. J Neurophysiol. 2003;90(4):2253-60. CrossRef PubMed
  4.  
  5. Jefferys JG, Haas HL. Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature. 1982;300(5891):448-50. CrossRef PubMed
  6.  
  7. Snow RW, Dudek FE. Synchronous epileptiform bursts without chemical transmission in CA2, CA3 and dentate areas of the hippocampus. Brain Res. 1984;298(2):382-5. CrossRef  
  8. Xiong ZQ, Stringer JL. Prolonged bursts occur in normal calcium in hippocampal slices after raising excitability and blocking synaptic transmission. J Neurophysiol. 2001;86(5):2625-8. CrossRef PubMed
  9.  
  10. Jefferys JG. Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev. 1995;75(4):689-723. CrossRef PubMed
  11.  
  12. Ghai RS, Bikson M, Durand DM. Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J Neurophysiol. 2000;84(1):274-80. CrossRef PubMed
  13.  
  14. Zhang M, Ladas TP, Qiu C, Shivacharan RS, GonzalezReyes LE, Durand DM. Propagation of epileptiform activity can be independent of synaptic transmission, gap junctions, or diffusion and is consistent with electrical field transmission. J Neurosci. 2014;34(4):1409-19. CrossRef PubMed PubMedCentral
  15.  
  16. Talnov AN, Isaeva E, Savotchenko AV, Dovgalets GV, Ochoa JG, Holmes GL, Isaev D. Electrolyte therapy reduces spike-and-wave discharges in the WAG. Rij rat model of absence epilepsy. Epilepsy Behav. 2012;24(4):399-402. CrossRef PubMed PubMedCentral
  17.  
  18. Haas HL, Jefferys JG. Low‐calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. J Physiol. 1984;354(1):185-201. CrossRef PubMed PubMedCentral
  19.  
  20. Lian J, Bikson M, Shuai J, Durand DM. Propagation of nonsynaptic epileptiform activity across a lesion in rat hippocampal slices. J Physiol. 2001;537(Pt 1):191. CrossRef PubMed PubMedCentral
  21.  
  22. Perez-Velazquez JL, Valiante TA, Carlen PL. Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis. J Neurosci. 1994;14(7):4308-17. CrossRef PubMed PubMedCentral
  23.  
  24. Isaev D, Ivanchick G, Khmyz V, Isaeva E, Savrasova A, Krishtal O, Holmes GL, Maximyuk O. Surface charge impact in low-magnesium model of seizure in rat hippocampus. J Neurophysiol. 2012;107(1):417-23. CrossRef PubMed PubMedCentral
  25.  
  26. Konnerth A, Heinemann U, Yaari Y. Slow transmission of neural activity in hippocampal area CA1 in absence of active chemical synapses. Nature. 1984;307(5946):69-71. CrossRef PubMed
  27.  
  28. Feng Z, Durand DM. Effects of potassium concentration on firing patterns of low-calcium epileptiform activity in anesthetized rat hippocampus: Inducing of persistent spike activity. Epilepsia. 2006;47(4):727-36. CrossRef PubMed
  29.  
  30. Cain SM, Snutch TP. T-type calcium channels in burst-firing, network synchrony, and epilepsy. BBA Biomembranes. 2013;1828(7):1572-8. CrossRef PubMed
  31.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.