Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2020; 66(2-3): 13-20


ANALYSIS OF ASSOCIATION BETWEEN LONG NON-CODING RNA ANRIL GENE RS4977574 POLYMORPHISM AND BLADDER CANCER DEVELOPMENT

A. D. Volkogon, O.A. Obukhova, V. Yu. Harbuzova, A.V. Ataman

    Sumy State University, Ukraine
DOI: https://doi.org/10.15407/fz66.2-3.013


Abstract

Herein the results of long non-coding RNA ANRIL gene rs4977574 polymorphism determination in 241 representatives of Ukrainian population: 141 patients with transitional cell carcinoma of urinary bladder (TCCUB) and 100 patients without oncological history (control group) have been submitted. Genotyping was performed using real-time polymerase chain reaction (Real-time PCR) method. The genotypes frequency of ANRIL gene rs4977574 locus in general group was not significantly different between control subjects and TCCUB patients. Stratified analysis revealed no significant difference between women, men, nonsmokers and smokers. The results of binary logistic regression showed no association between rs4977574 site and TCCUB risk in general group. Significant association was not found even after adjusting for gender, age, body mass index, and smoking habit. Analysis in male, female subjects, in individuals without and with smoking habit demonstrated similar results. Thus, no link between ANRIL gene rs4977574 polymorphism and TCCUB development in Ukrainian population was established.

Keywords: long non-coding RNA; ANRIL; single-nucleotide polymorphism; bladder cancer.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. CrossRef PubMed
  2.  
  3. Wang L, Fu D, Qiu Y, Xing X, Xu F, Han C et al. Genomewide screening and identification of long noncoding RNAs and their interaction with protein coding RNAs in bladder urothelial cell carcinoma. Cancer Lett. 2014;349(1):77-86. CrossRef PubMed
  4.  
  5. Congrains A, Kamide K, Ohishi M, Rakugi H. ANRIL: molecular mechanisms and implications in human health. Int J Mol Sci. 2013;14(1):1278-92. CrossRef PubMed PubMedCentral
  6.  
  7. Gil J, Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol. 2006;7(9):667-77. CrossRef PubMed
  8.  
  9. Ma J, Li T, Han X, Yuan H. Knockdown of LncRNA ANRIL suppresses cell proliferation, metastasis, and invasion via regulating miR-122-5p expression in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2018;144:205-14. CrossRef PubMed
  10.  
  11. Lu Y, Zhou X, Xu L, Rong C, Shen C, Bian W. Long noncoding RNA ANRIL could be transactivated by c-Myc and promote tumor progression of non-small-cell lung cancer. OncoTargets Ther. 2016;9:3077-84. CrossRef PubMed PubMedCentral
  12.  
  13. Zhang E, Kong R, Yin DD, You L, Sun M, Han L, et al. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a. miR-449a. Oncotarget. 2014;5(8):2276-92. CrossRef PubMed PubMedCentral
  14.  
  15. Meseure D, Vacher S, Alsibai KD, Nicolas A, Chemlali W, Caly M, et al. Expression of ANRIL-polycomb complexes-CDKN2A. B. ARF genes in breast tumors: identification of a two-gene (EZH2. CBX7) signature with independent prognostic value. Mol Cancer Res. 2016;14:623-33. CrossRef PubMed
  16.  
  17. Zhu H, Li X, Song Y, Zhang P, Xiao Y, Xing Y. Long noncoding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway. Biochem Biophys Res Commun. 2015;467(2):223-8. CrossRef PubMed
  18.  
  19. Gayther S, Song H, Ramus S, Kjaer S, Whittemore A, Quaye L, et al. Tagging single nucleotide polymorphisms in cell cycle control genes and susceptibility to invasive epithelial ovarian cancer. Cancer Res. 2007;67(7):3027-35. CrossRef PubMed
  20.  
  21. Yeh I, Bastian B. Genome-wide associations studies for melanoma and nevi. Pigment Cell Melanoma Res. 2009;22:527-8. CrossRef PubMed PubMedCentral
  22.  
  23. Gong WJ, Yin J, Li XP, Fang C, Xiao D, Zhang W, et al. Association of well-characterized lung cancer lncRNA polymorphisms with lung cancer susceptibility and platinum-based chemotherapy response. Tumour Biol. 2016;37(6):8349-58. CrossRef PubMed
  24.  
  25. Iacobucci I, Sazzini M, Garagnani P, Ferrari A, Boattini A, Lonetti A, et al. A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia. Leuk Res. 2011;35(8):1052-9. CrossRef PubMed
  26.  
  27. Taheri M, Pouresmaeili F, Omrani MD, Habibi M, Sarrafzadeh S, Noroozi R, et al. Association of ANRIL gene polymorphisms with prostate cancer and benign prostatic hyperplasia in an Iranian population. Biomark Med. 2017;11(5):413-22. CrossRef PubMed
  28.  
  29. DeGeorge K, Holt H, Hodges S. Bladder cancer: Diagnosis and treatment. Am Fam Physician. 2017;96(8):507-14.
  30.  
  31. Tung M, Wen Y, Wang S, Lin Y, Chow J, Yang S, et al. Impact of long non-coding RNA hotair genetic variants on the susceptibility and clinicopathologic characteristics of patients with urothelial cell carcinoma. J Clin Med. 2019;8(3):E282. CrossRef PubMed PubMedCentral
  32.  
  33. Yang P, Hsieh M, Hung T, Wang S, Chen S, Lee M, et al. Effects of long noncoding RNA H19 polymorphisms on urothelial cell carcinoma development. Int J Environ Res Publ Health. 2019;16(8):E1322. CrossRef PubMed PubMedCentral
  34.  
  35. Wang Y, Wang L, Liu X, Zhang Y, Yu L, Zhang F, et al. Genetic variants associated with myocardial infarction and the risk factors in Chinese population. PloS One. 2014;9:e86332. CrossRef PubMed PubMedCentral
  36.  
  37. Sakalar C, Gurbuz E, Kalay N, Kaya M. Nigher frequency of rs4977574 (the G Allele) on chromosome 9p21.3 in patients with myocardial infarction as revealed by PCRRFLP analysis. Tohoku J Exp Med. 2013;230(3):171-6. CrossRef PubMed
  38.  
  39. Hindy G, Ericson U, Hamrefors V, Drake I, Wirfält E, Melander O, et al. The chromosome 9p21 variant interacts with vegetable and wine intake to influence the risk of cardiovascular disease: a population based cohort study. BMC Med Genet. 2014;15:1220. CrossRef PubMed PubMedCentral
  40.  
  41. Kunnas T, Piesanen J, Nikkari S, et al. Association of a chromosome locus 9p21.3 CDKN2B-AS1 variant rs4977574 with hypertension: The TAMRISK study. Genet Test Mol Biomarkers. 2018;22(5):327-30. CrossRef PubMed
  42.  
  43. Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011;43:333-8. CrossRef PubMed PubMedCentral
  44.  
  45. Huang Y, Ye H, Hong Q, Xu X, Jiang D, Xu L, et al. Association of CDKN2BAS polymorphism rs4977574 with coronary heart disease: a case-control study and a meta-analysis. Int J Mol Sci. 2014;15:17478-92. CrossRef PubMed PubMedCentral
  46.  
  47. Ide H, Inoue S, Miyamoto H. The role of glucocorticoid receptor signaling in bladder cancer progression. Cancers (Basel). 2018;10(12):484. CrossRef PubMed PubMedCentral
  48.  
  49. Rink M, Crivelli JJ, Shariat SF, Chun FK, Messing EM, Soloway MS. Smoking and bladder cancer: A systematic review of risk and outcomes. Eur Urol Focus. 2015;1(1):17-27. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.