Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2019; 65(6): 105-125


I.M. Prudnikov1, V.M. Tsyvkin1, A.M. Smirnov1, I.V. Pristash1, V.A. Chernyak2, V.M. Selyuk3, P.F. Muzichenko3

  1. O.O. Bogomolets Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
  2. Taras Shevchenko National University of Kyiv, Ukraine
  3. O.O. Bogomolets National Medical University, Kyiv, Ukraine


Extracellular vesicles have a lot of different physiological functions: from regulation of gene expression to direct cytotoxic effects. There is a selective mechanism that combines the formation of new vesicles, their receptions, and the complex processing of the content. Vesicle recycling and reception is a versatile process that involves evolutionaryconservative factors. Vesicles and viruses use the same molecular mechanisms to enter and exit cells. The most unusual regulators of cellular physiology mediated by vesicles are many types of vesicular RNA and atypical lipid profile of their membranes. The physiological potential of extracellular vesicles is still unexplored, despite the abundance of new data. It can be assumed that current research brings us closer to understanding of integrative biological events that will allow us to correct physiological functions in various pathological conditions.

Keywords: exosomes, physiology of intercellular signaling


  1. Lee HS, Jeong J, Lee KJ. Characterization of vesicles secreted from insulinoma NIT-1 cells. J Proteome Res. 2009 Jun;8(6): 2851-62. CrossRef PubMed
  3. Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun. 2012;80(6):1948-57. CrossRef PubMed PubMedCentral
  5. Choi DS, Kim DK, Kim YK, Gho YS. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics. 2013 May;13 (10-11):1554-71. CrossRef PubMed
  7. Sadoul R, Laporte MH, Chassefeyre R, Chi KI, Goldberg Y, Chatellard C, et al. The role of ESCRT during development and functioning of the nervous system. Semin Cell Dev Biol. 2018 Feb;74:40-9. CrossRef PubMed
  9. György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011 Aug; 68(16): 2667-88. CrossRef PubMed PubMedCentral
  11. Antonyak MA, Cerione RA. Microvesicles as mediators of intercellular communication in cancer. Methods Mol Biol. 2014;1165:147-73. CrossRef PubMed
  13. Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol. 2007 Apr 23; 177(2): 329-41. CrossRef PubMed PubMedCentral
  15. Simons M, Raposo G. Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009 Aug; 21(4): 575-81. CrossRef PubMed
  17. Choi DS, Lee J, Go G, Kim YK, Gho YS. Circulating extracellular vesicles in cancer diagnosis and monitoring: an appraisal of clinical potential. Mol Diagn Ther. 2013 Oct;17(5):265-71. CrossRef PubMed
  19. Ratajczak J, Wysoczynski M, Hayek F, JanowskaWieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006 Sep;20(9):1487-95. CrossRef PubMed
  21. Kim CW, Lee HM, Lee TH, Kang C, Kleinman HK, Gho YS. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res. 2002 Nov 1; 62(21):6312-7.
  23. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008 May;10(5):619-24. CrossRef PubMed
  25. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654-9. CrossRef PubMed
  27. Bulgari D, Jha A, Deitcher DL, Levitan ES. Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release. Proc Natl Acad Sci USA. 2018 Feb 13;115(7):1617-22. CrossRef PubMed PubMedCentral
  29. Christianson HC, Svensson KJ, Belting M. Exosome and microvesicle mediated phene transfer in mammalian cells. Seminars in cancer biology. 2014;28:31-8. CrossRef PubMed
  31. van Dongen HM, Masoumi N, Witwer KW, Pegtel DM. Extracellular vesicles exploit viral entry routes for cargo delivery. Microbiology and molecular biology reviews: MMBR 2016;80(2):369-86. CrossRef PubMed PubMedCentral
  33. Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M. Sorting it out: Regulation of exosome loading. Seminars in cancer biology 2014;28:3-13. CrossRef PubMed PubMedCentral
  35. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284(49):34211-22. CrossRef PubMed PubMedCentral
  37. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756-66. CrossRef PubMed PubMedCentral
  39. Aryani A, Denecke B. Exosomes as a nanodelivery system: a Key to the future of neuromedicine? Mol neurobiol. 2016;53(2):818-21. CrossRef PubMed PubMedCentral
  41. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracellular Vesicles. 2014;3. CrossRef PubMed PubMedCentral
  43. Chivet M, Javalet C, Laulagnier K, Blot B, Hemming FJ, Sadoul R. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracellular Vesicles. 2014;3:24722. CrossRef PubMed PubMedCentral
  45. Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005;106(5):1604-11. CrossRef PubMed
  47. Alberts B, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. Garland Science. 2007. CrossRef  
  48. Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochimica et Biophysica Acta (BBA) Mol and Cell Biol of Lipids. 2014;1841(1):108-20. CrossRef PubMed
  50. Record M. Intercellular communication by exosomes in placenta: A possible role in cell fusion? Placenta. 2014;35(5):297-302. CrossRef PubMed
  52. Nakase I, Kobayashi NB, Takatani-Nakase T, Yoshida T. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes.  Sci Reports. 2015;5:10300. CrossRef PubMed PubMedCentral
  54. Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, et al. Exosome uptake through clathrinmediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem. 2014;289(32):22258-67. CrossRef PubMed PubMedCentral
  56. Fitzner D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti M, et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci. 2011;124(Pt 3):447-58. CrossRef PubMed
  58. Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic (Copenhagen, Denmark). 2010;11(5):675-87. CrossRef PubMed
  60. Barres C, Blanc L, Bette-Bobillo P, Andre S, Mamoun R, Gabius HJ, et al. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood. 2010;115(3):696-705. CrossRef PubMed
  62. Nanbo A, Kawanishi E, Yoshida R, Yoshiyama H. Exosomes derived from Epstein-Barr virusinfected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J Virol. 2013;87(18):10334-47. CrossRef PubMed PubMedCentral
  64. Svensson KJ, Christianson HC, Wittrup A, Bourseau-Guilmain E, Lindqvist E, Svensson LM, et al. Exosome uptake depends on ERK1. 2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem. 2013;288(24):17713-24. CrossRef PubMed PubMedCentral
  66. Plebanek MP, Mutharasan RK, Volpert O, Matov A, Gatlin JC, Thaxton CS. Nanoparticle targeting and cholesterol flux through scavenger receptor type B-1 inhibits cellular exosome uptake. Sci Reports. 2015;5:15724. CrossRef PubMed PubMedCentral
  68. Hazan-Halevy I, Rosenblum D, Weinstein S, Bairey O, Raanani P, Peer D. Cell-specific uptake of mantle cell lymphoma-derived exosomes by malignant and non-malignant B-lymphocytes. Cancer Lett. 2015;364(1):59-69. CrossRef PubMed PubMedCentral
  70. Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011;89(8):836-43. CrossRef PubMed
  72. Costa Verdera H, Gitz-Francois JJ, Schiffelers RM, Vader P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Controlled Release. 2017;266:100-8. CrossRef PubMed
  74. Nakase I, Noguchi K, Fujii I, Futaki S. Vectorization of biomacromolecules into cells using extracellular vesicles with enhanced internalization induced by macropinocytosis. Sci Reports. 2016;6:34937. CrossRef PubMed PubMedCentral
  76. Gordon S. Phagocytosis: An Immunobiologic Process. Immunity. 2016;44(3):463-75. CrossRef PubMed
  78. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37-44. CrossRef PubMed
  80. Fruhbeis C, Frohlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, et al. Neurotransmitter triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11(7): e1001604. CrossRef PubMed PubMedCentral
  82. Lanzetti L, Di Fiore PP. Endocytosis and cancer: an 'insider' network with dangerous liaisons. Traffic (Copenhagen, Denmark). 2008;9(12): 2011-21. CrossRef PubMed
  84. El-Sayed A, Harashima H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther. 2013;21(6):1118-30. CrossRef PubMed PubMedCentral
  86. Escrevente C, Keller S, Altevogt P, Costa J. Interaction and uptake of exosomes by ovarian cancer cells. BMC cancer. 2011;11:108. CrossRef PubMed PubMedCentral
  88. Koumangoye RB, Sakwe AM, Goodwin JS, Patel T, Ochieng J. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PloS One. 2011;6(9):e24234. CrossRef PubMed PubMedCentral
  90. Zech D, Rana S, Buchler MW, Zoller M. Tumor-exosomes and leukocyte activation: an ambivalent crosstalk. Cell Comm Signal. 2012;10(1):37. CrossRef PubMed PubMedCentral
  92. Calzolari A, Raggi C, Deaglio S, Sposi NM, Stafsnes M, Fecchi K, et al. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J Cell Sci. 2006; 119(Pt 21):4486-98. CrossRef PubMed
  94. Johnstone RM, Bianchini A, Teng K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood. 1989;74(5):1844-51. CrossRef PubMed
  96. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29(4):431-8. CrossRef PubMed PubMedCentral
  98. Rajendran L, Simons K. Lipid rafts and membrane dynamics. J Cell Sci. 2005;118(Pt 6):1099-102. CrossRef PubMed
  100. Cureton DK, Harbison CE, Cocucci E, Parrish CR, Kirchhausen T. Limited transferrin receptor clustering allows rapid diffusion of canine parvovirus into clathrin endocytic structures. J Virol. 2012;86(9):5330-40. CrossRef PubMed PubMedCentral
  102. Moller-Tank S, Maury W. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology. 2014;468-70:565-80. CrossRef PubMed PubMedCentral
  104. Jeong HS, Na KS, Hwang H, Oh PS, Kim DH, Lim ST, et al. Effect of space length of mannose ligand on uptake of mannosylated liposome in RAW 264.7 cells: In vitro and in vivo studies. J Biomed Materials Res Part A. 2014;102(12):4545-53. CrossRef PubMed
  106. Kawauchi Y, Kuroda Y, Kojima N. Preferences for uptake of carbohydrate-coated liposomes by C-type lectin receptors as antigen-uptake receptors. Glycoconjugate J. 2012;29(7):481-90. CrossRef PubMed
  108. Watson DC, Bayik D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials. 2016;105:195-205. CrossRef PubMed
  110. Ritz S, Schottler S, Kotman N, Baier G, Musyanovych A, Kuharev J, et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules. 2015;16(4):1311-21. CrossRef PubMed
  112. Gonda A, Kabagwira J, Senthil GN, Wall NR. Internalization of exosomes through receptor-mediated endocytosis. Mol Cancer Res. 2019 Feb;17(2):337-47. CrossRef PubMed
  114. Carlton J1, Bujny M, Peter BJ, Oorschot VM, Rutherford A, Mellor H, Klumperman J, McMahon HT, Cullen PJ. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr Biol. 2004 Oct  26;14(20):1791-800. CrossRef PubMed
  116. van Weering JR, Sessions RB, Traer CJ, et al. Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules. EMBO J. 2012 Nov 28;31(23):4466-80. CrossRef PubMed PubMedCentral
  118. Burd C1, Cullen PJ. Retromer: a master conductor of endosome sorting. Cold Spring Harb Perspect Biol. 2014 Feb 1; 6(2). CrossRef PubMed PubMedCentral
  120. McGough IJ, Cullen PJ. Recent advances in retromer biology. 2011. Traffic. 12(8):963-71. CrossRef PubMed
  122. Zhang Y, Grant B, Hirsh D. RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. Mol Biol Cell. 2001;12(7): 2011-21. CrossRef PubMed PubMedCentral
  124. Walsh P, Bursa D, Law YC, Cyr D, Lithgow T. The J-protein family: Modulating protein assembly, disassembly and translocation. EMBO Rep. 2004;5(6):567-71. CrossRef PubMed PubMedCentral
  126. Ungewickell E, Ungewickell H, Holstein SE, Lindner R, Prasad K, Barouch W, et al. Role of auxilin in uncoating clathrin-coated vesicles. Nature. 1995 Dec 7;378(6557):632-5. CrossRef PubMed
  128. Greener T, Grant B, Zhang Y, Wu X, Greene LE, Hirsh D, Eisenberg E. Caenorhabditis elegans auxilin: a J-domain protein essential for clathrin-mediated endocytosis in vivo. Nat Cell Biol. 2001 Feb;3(2):215-9. CrossRef PubMed
  130. Shi A, Sun L, Banerjee R, Tobin M, Zhang Y, Grant BD. Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO J. 2009 Nov 4;28(21):3290-302. CrossRef PubMed PubMedCentral
  132. Popoff V, Mardones GA, Bai SK, Chambon V, Tenza D, Burgos PV, et al. Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Traffic. 2009 Dec;10(12):1868-80. CrossRef PubMed
  134. Xhabija B, Vacratsis PO. Receptor-mediated endocytosis 8 utilizes an N-terminal phosphoinositide-binding motif to regulate endosomal clathrin dynamics. J Biol Chem. 2015;290(35):21676-89. CrossRef PubMed PubMedCentral
  136. Fujibayashi A1, Taguchi T, Misaki R, Ohtani M, Dohmae N, Takio K, et al. Human RME-8 is involved in membrane trafficking through early endosomes. Cell Struct Funct. 2008;33(1):35-50. CrossRef PubMed
  138. Freeman CL, Hesketh G, Seaman MN. RME-8 coordinates the activity of the WASH complex with the function of the retromer SNX dimer to control endosomal tubulation. J Cell Sci. 2014, 127(pt 9):2053-70. CrossRef PubMed PubMedCentral
  140. Hurley JH. The ESCRT complexes. Crit Rev Biochem Mol Biol. 2010;45(6):463-87. CrossRef PubMed PubMedCentral
  142. Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol. 2011 Aug; 23(4):452-7. CrossRef PubMed PubMedCentral
  144. Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell. 2011;21(1):77-91. CrossRef PubMed
  146. Polo S, Sigismund S, Faretta M, Guidi M, Capua MR, Bossi G, et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature. 2002 Mar 28;416(6879):451-5. CrossRef PubMed
  148. Bishop N, Horman A, Woodman P. Mammalian class E vps proteins recognize ubiquitin and act in the removal of endosomal protein-ubiquitin conjugates. J Cell Biol. 2002; 157(1):91-101. CrossRef PubMed PubMedCentral
  150. Hofmann K, Falquet L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci. 2001;26(6):347-50. CrossRef  
  151. Raiborg C, Stenmark H. Hrs and endocytic sorting of ubiquitinated membrane proteins. Cell Struct Funct. 2002;27(6):403-8. CrossRef PubMed
  153. Raiborg C, Bache KG, Gillooly DJ, Madshus IH, Stang E, Stenmark H. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol. 2002 May;4(5):394-8. CrossRef PubMed
  155. Raiborg C, Bremnes B, Mehlum A, Gillooly DJ, D'Arrigo A, Stang E, Stenmark H. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J Cell Sci. 2001 Jun;114(Pt 12):2255-63.
  157. Sönnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol. 2000; 149(4):901-14. CrossRef PubMed PubMedCentral
  159. Sachse M, Urbé S, Oorschot V, Strous GJ, Klumperman J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol Biol Cell. 2002;13(4):1313-28. CrossRef PubMed PubMedCentral
  161. Norris A, Tammineni P, Wang S, Gerdes J, Murr A, Kwan KY3, Cai Q, Grant BD. SNX-1 and RME-8 oppose the assembly of HGRS-1. ESCRT-0 degradative microdomains on endosomes. Proc Natl Acad Sci USA. 2017 Jan 17;114(3):E307-E316. CrossRef PubMed PubMedCentral
  163. Teis D, Saksena S, Emr SD. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell. 2008,15(4):578-89. CrossRef PubMed
  165. Sadoul R. Do Alix and ALG-2 really control endosomes for better or for worse? Biol Cell. 2006 Jan; 98(1):69-77. CrossRef PubMed
  167. Bissig C, Gruenberg J. ALIX and the multivesicular endosome: ALIX in Wonderland, Trends Cell Biol. 2014;24(1):19-25. CrossRef PubMed
  169. Doyotte A, Mironov A, McKenzie E, Woodman P. The Bro1-related protein HDPTP. PTPN23 is required for endosomal cargo sorting and multivesicular body morphogenesis, Proc Natl Acad Sci USA. 2008; 105(17):6308-13. CrossRef PubMed PubMedCentral
  171. Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, et al. Tsg101 and thevacuolar protein sorting pathway are essential for HIV-1 budding. Cell. 2001;107(1):55-65. CrossRef  
  172. Strack B, Calistri A, Craig S, Popova E, Gottlinger HG. AIP1. ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding, Cell. 2003;114(6):689-99. CrossRef  
  173. Martin-Serrano J, Yarovoy A, Perez-Caballero D, Bieniasz PD, Divergent retroviral latebudding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci USA. 2003;100(21):12414-9. CrossRef PubMed PubMedCentral
  175. Segura-Morales C, Pescia C, Chatellard-Causse C, Sadoul R, Bertrand E, Basyuk E. Tsg101 and Alix interact with murine leukemia virus Gag and cooperate with Nedd4 ubiquitin ligases during budding. J Biol Chem. 2005; 280(29):27004-12. CrossRef PubMed
  177. Morita E, Sandrin V, McCullough J, Katsuyama A, Baci Hamilton I, Sundquist WI. ESCRTIII Protein Requirements for HIV-1 Budding, Cell Host Microbe. 2011;9(3):235-42. CrossRef PubMed PubMedCentral
  179. Sandrin V, Sundquist WI. ESCRT requirements for EIAV budding, Retrovirology. 2013;10, 104. CrossRef PubMed PubMedCentral
  181. Bartusch C, Prange R. ESCRT Requirements for Murine Leukemia Virus Release. Viruses. 2016;8(4):103. CrossRef PubMed PubMedCentral
  183. Carlton JG, Martin-Serrano J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science. 2007; 316(5833):1908-12. CrossRef PubMed
  185. Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. Embo J. 2007;26(19):4215-27. CrossRef PubMed PubMedCentral
  187. Guizetti J, Schermelleh L, Mäntler J, Maar S, Poser I, Leonhardt H, et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science. 2011 Mar 25;331(6024):1616-20. CrossRef PubMed
  189. Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Divoux S, Piel M, Perez F. ESCRT machinery is required for plasma membrane repair. Science. 2014 Feb 28;343(6174):1247-136. CrossRef PubMed
  191. Scheffer LL, Sreetama SC, Sharma N, Medikayala S, Brown KJ, Defour A, Jaiswal JK. Mechanism of Ca²⁺- triggered ESCRT assembly and regulation of cell membrane repair. Nat Commun. 2014 Dec;23(5):5646. CrossRef PubMed PubMedCentral
  193. Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci USA. 2012 Mar 13;109(11):4146-51. CrossRef PubMed PubMedCentral
  195. Matusek T, Wendler F, Polès S, Pizette S, D'Angelo G, Fürthauer M, Thérond PP. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature. 2014 Dec 4; 516(7529):99-103. CrossRef PubMed
  197. Webster BM, Colombi P, Jäger J, Lusk CP. Surveillance of nuclear pore complex assembly by ESCRT-III. Vps4. Cell. 2014 Oct 9;159(2):388-401. CrossRef PubMed PubMedCentral
  199. Olmos Y, Hodgson L, Mantell J, Verkade P, Carlton JG. ESCRT-III controls nuclear envelope reformation. Nature. 2015 Jun 11;522(7555):236-9. CrossRef PubMed PubMedCentral
  201. Vietri M, Schink KO, Campsteijn C, Wegner CS, Schultz SW, Christ L, et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature. 2015 Jun 11;522(7555):231-5. CrossRef PubMed
  203. Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M, Weigelin B, et al. Nuclear envelope rupture and repair during cancer cell migration. Science. 2016 Apr 15;352(6283):353-8. CrossRef PubMed PubMedCentral
  205. Raab M, Gentili M, de Belly H, Thiam HR, Vargas P, Jimenez AJ, et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science. 2016 Apr 15;352(6283):359-62. CrossRef PubMed
  207. Sadoul R, Laporte MH, Chassefeyre R, Chi KI, Goldberg Y, Chatellard C, et al. The role of ESCRT during development and functioning of the nervous system. Semin Cell Dev Biol. 2018 Feb; 74:40-9. CrossRef PubMed
  209. Hanyaloglu, AC, and von Zastrow M. A novel sorting sequence in the beta2-adrenergic receptor switches recycling from default to the Hrs-dependent mechanism. J Biol Chem. 2007, 282:3095-104. CrossRef PubMed
  211. Huang SH, Zhao L, Sun ZP, Li XZ, Geng Z, Zhang KD, et al. Essential role of Hrs in endocytic recycling of fulllength TrkB receptor but not its isoform TrkB.T1. J Biol Chem. 2009, 284:15126-36. CrossRef PubMed PubMedCentral
  213. MacDonald, Brown E, Selvais L, Liu A , Waring H, Newman T, et al. HRS-WASH axis governs actin-mediated endosomal recycling and cell invasion. J Cell Biol. 2018 Jul 2; 217(7):2549-64. CrossRef PubMed PubMedCentral
  215. Zech, T, Calaminus SD, Caswell P, Spence HJ, Carnell M, Insall RH, et al. The Arp2. 3 activator WASH regulates α5β1-integrin-mediated invasive migration. J Cell Sci. 2011;124:3753-59. CrossRef PubMed PubMedCentral
  217. Dozynkiewicz MA, Jamieson NB, Macpherson I, Grindlay J, van den Berghe PV, von Thun A, et al. Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes. lysosomes and drive cancer progression. Dev Cell. 2012;22:131-45. CrossRef PubMed PubMedCentral
  219. Macpherson IR, Rainero E, Mitchell LE, van den Berghe PV, Speirs C, Dozynkiewicz MA, et al. CLIC3 controls recycling of late endosomal MT1-MMP and dictates invasion and metastasis in breast cancer. J Cell Sci. 2014;127:3893-901. CrossRef PubMed
  221. Harbour ME, Breusegem SY, Antrobus R. Freeman C, Reid E, Seaman MN. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J Cell Sci. 2010;123:3703-17. CrossRef PubMed PubMedCentral
  223. Harbour ME, Breusegem SY, and Seaman MN. Recruitment of the endosomal WASH complex is mediated by the extended 'tail' of Fam21 binding to the retromer protein Vps35. Biochem J. 2012;442:209-20. CrossRef PubMed
  225. Jia D, Gomez TS, Billadeau DD, and Rosen MK. Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer. Mol Biol Cell. 2012;23:2352-61. CrossRef PubMed PubMedCentral
  227. Pons V, Luyet PP, Morel E, Abrami L, van der Goot FG, Parton RG, and Gruenberg J. Hrs and SNX3 functions in sorting and membrane invagination within multivesicular bodies. PLoS Biol. 2008;6:e214. CrossRef PubMed PubMedCentral
  229. Urbé S, Mills IG, Stenmark H, Kitamura N, and Clague MJ. Endosomal localization and receptor dynamics determine tyrosine phosphorylation of hepatocyte growth factor-regulated tyrosine kinase substrate. Mol Cell Biol. 2000;20:7685-92. CrossRef PubMed PubMedCentral
  231. Mao Y, Nickitenko A, Duan X, Lloyd TE, Wu MN, Bellen H, and Quiocho FA. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved  in membrane trafficking and signal transduction. Cell. 2000;100:447-56. CrossRef  
  232. Puertollano R, Aguilar RC, Gorshkova I, Crouch RJ, and Bonifacino JS. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science. 2001,292:1712-16. CrossRef PubMed
  234. Misra S, Puertollano R, Kato Y, Bonifacino JS, and Hurley JH. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature. 2002;415:933-37. CrossRef PubMed
  236. Ren X, and Hurley JH. VHS domains of ESC RT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J. 2010;29:1045-54. CrossRef PubMed PubMedCentral
  238. Calderwood DA, Shattil SJ, and Ginsberg MH. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem. 2000;275:22607-10. CrossRef PubMed
  240. Jiang G, Giannone G, Critchley D, Fukumoto R, and Sheetz MP. Two-piconewton slip bond between fibronectin and the E. Cytoskeleton depends on talin. Nature. 2003;424:334-7. CrossRef PubMed
  242. Puthenveedu MA, Lauffer B, Temkin P, Vistein R, Carlton P, Thorn K et al. Sequence-dependent sorting of recycling proteins by actin-stabilized endosomal microdomains. Cell. 2010;143:761-73. CrossRef PubMed PubMedCentral
  244. Zech T, Calaminus SD, and Machesky LM. Actin on trafficking: could actin guide directed receptor transport? Cell Adhes. Migr. 2012;6:476-81. CrossRef PubMed PubMedCentral
  246. Huang F, Kirkpatrick D, Jiang X, Gygi S, and Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006;21:737-48. CrossRef PubMed
  248. Row PE, Clague MJ, and Urbé S. Growth factors induce differential phosphorylation profiles of the Hrs-STAM complex: a common node in signalling networks with signal-specific properties. Biochem J. 2005;389:629-636. CrossRef PubMed PubMedCentral
  250. Ratajczak J, Miekus K, Kucia, M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006; 20:847-856. CrossRef PubMed
  252. Skog, J, Wurdinger T, van Rijin S, Meijer DH, Gainche L, Curry WT, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470-6. CrossRef PubMed PubMedCentral
  254. Tsatsaronis JA, Franch-Arroyo S, Resch U, Charpentier E. Extracellular vesicle RNA: A universal mediator of microbial communication? Trends Microbiol. 201;26:401-10. CrossRef PubMed
  256. Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016;36:301-12. CrossRef PubMed PubMedCentral
  258. Nolte-'t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, Hoen PA. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012;40:9272-85. CrossRef PubMed PubMedCentral
  260. Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3'-untranslated regions. Biol Direct. 2013;8:12. CrossRef PubMed PubMedCentral
  262. Lefebvre FA, Benoit Bouvrette LP, Perras L, BlanchetCohen A, Garnier D, Rak J, et al. Comparative transcriptomic analysis of human and Drosophila extracellular vesicles. Sci Rep. 2016;6:27680. CrossRef PubMed PubMedCentral
  264. Wei Z, Batagov AO, Schinelli S, Wang J, Wang Y, El Fatimy R, et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun. 2017;8:1145. CrossRef PubMed PubMedCentral
  266. Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Strobel T, Erkan EP, et al. miR-1289 and "zipcode"-like sequence enrich mRNA in microvesicles. J Extracell. Vesicles. 2012;1:2. CrossRef PubMed PubMedCentral
  268. Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler, et al. KRAS-dependent sorting of miRNA to exosomes. eLife. 2015,4:e07197. CrossRef PubMed PubMedCentral
  270. Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26:707-21. CrossRef PubMed PubMedCentral
  272. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009;11:1143-9. CrossRef PubMed
  274. Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980. CrossRef PubMed PubMedCentral
  276. Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife. 2016;5. CrossRef PubMed PubMedCentral
  278. Faury D, Nantel A, Dunn SE, Guiot MC, Haque T, Hauser P, et al. Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol. 2007;25:1196-208. CrossRef PubMed
  280. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482:226-31. CrossRef PubMed
  282. Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, et al. The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep. 2016;17:799-808. CrossRef PubMed
  284. Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MAJ, Sadek P, Sie D, et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 2014; 8:1649-58. CrossRef PubMed
  286. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285:17442-52. CrossRef PubMed PubMedCentral
  288. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science (New York NY). 2008;319:1244-7. CrossRef PubMed
  290. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA. 2014;111:14888-93. CrossRef PubMed PubMedCentral
  292. Qin Y, Yao J, Wu DC, Nottingham RM, Mohr S, HunickeSmith S, Lambowitz AM. High-throughput sequencing of human plasma RNA by using thermostable group II intron reverse transcriptases. RNA. 2016 Jan;22(1):111-28. CrossRef PubMed PubMedCentral
  294. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011 Mar 22;108(12):5003-8. CrossRef PubMed PubMedCentral
  296. Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler M, et al. KRAS-dependent sorting of miRNA to exosomes. Elife. 2015 Jul,1;4:e07197. CrossRef PubMed PubMedCentral
  298. Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife. 2016 Aug 25;5. pii: e19276. CrossRef PubMed PubMedCentral
  300. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980. CrossRef PubMed PubMedCentral
  302. Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, et al. The RNA-binding protein SYNCRIP is a component of the Hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep. 2016 Oct 11; 17(3):799-808. CrossRef PubMed
  304. Mukherjee K, Ghoshal B, Ghosh S, Chakrabarty Y, Shwetha S, Das S, et al. Reversible HuR-microRNA binding controls extracellular export of miR-122 and augments stress response. EMBO Rep. 2016 Aug;17(8):1184-203. CrossRef PubMed PubMedCentral
  306. Shurtleff MJ, Yao J, Qin Y, Nottingham RM, TemocheDiaz MM, Schekman R, et al. Broad role for YBX1 in defining the small noncoding RNA composition of exosomes. Proc Natl Acad Sci USA. 2017 Oct 24;114(43):E8987-E995. CrossRef PubMed PubMedCentral
  308. Janas T, Janas MM, Sapoń K, Janas T. Mechanisms of RNA loading into exosomes. FEBS Lett. 2015 Jun 4;589(13):1391-8. CrossRef PubMed
  310. Wu BX, Clarke CJ, Matmati N, Montefusco D, Bartke N, and Hannun YA. Identification of novel anionic phospholipid binding domains in neutral sphingomyelinase 2 with selective binding preference. J Biol Chem. 2011;286,22362-71. CrossRef PubMed PubMedCentral
  312. Rappa G, Mercapide J, Fabio Anzanello, Pope F, Lorico A. Biochemical and biological characterization of exosomes containing prominin-1. CD133. Mol Cancer 2013;12:62. CrossRef PubMed PubMedCentral
  314. Record M, Carayon K, Poirot M, and Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta. 2014;1841,108-20. CrossRef PubMed
  316. Kajimoto T, Okada T, Miya S, Lifang Zhang L, and Nakamura S. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat Commun. 2013;4,2712. CrossRef PubMed
  318. Gulbins E and Kolesnick R. Raft ceramide in molecular medicine. Oncogene. 2003;22,7070-77. CrossRef PubMed
  320. Chiantia S, Kahya N, Ries J and Schwille P. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys J. 2006;90,4500-8. CrossRef PubMed PubMedCentral
  322. Johnston I and Johnston LJ. Ceramide promotes restructuring of model raft membranes. Langmuir. 2006;22,11284-9. CrossRef PubMed
  324. Nurminen TA, Holopainen JM, Zhao H and Kinnunen PKJ. Observation of topical catalysis by sphingomyelinase coupled to microspheres. J Am Chem Soc. 2002;124,12129-34. CrossRef PubMed
  326. Vyas P, Balakier H, Librach CL. Ultrastructural identification of CD9 positive extracellular vesicles released from human embryos and transported through the zona pellucida. Syst Biol Reprod Med. 2019 Aug;65(4):273-80. CrossRef PubMed
  328. Hayashi T, Hoffman MP. Exosomal microRNA communication between tissues during organogenesis. RNA Biol. 2017 Dec 2;14(12):1683-9. CrossRef PubMed PubMedCentral
  330. Giacomini E, Alleva E, Fornelli G, Quartucci A, Privitera L, Vanni VS, et al. Embryonic extracellular vesicles as informers to the immune cells at the maternal-fetal interface. Clin Exp Immunol. 2019 Apr 22. CrossRef PubMed
  332. Choi D, Lee TH, Spinelli C, Chennakrishnaiah S, D'Asti E, Rak J. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin Cell Dev Biol. 2017 Jul;67:11-22. CrossRef PubMed
  334. Hong SB, Yang H, Manaenko A, Lu J, Mei Q, Hu Q. Potential of Exosomes for the Treatment of Stroke. Cell Transplant. 2018 Dec 6:963-8. CrossRef PubMed PubMedCentral
  336. Zhu L, Kalimuthu S, Gangadaran P, Oh JM, Lee HW, Baek SH, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics. 2017 Jul 7;7(10):2732-45. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.