Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2019; 65(6): 105-125


CURRENT COMPREHENSION OF VESICULAR INTERCELLULAR SIGNALING

I.M. Prudnikov1, V.M. Tsyvkin1, A.M. Smirnov1, I.V. Pristash1, V.A. Chernyak2, V.M. Selyuk3, P.F. Muzichenko3

  1. O.O. Bogomolets Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
  2. Taras Shevchenko National University of Kyiv, Ukraine
  3. O.O. Bogomolets National Medical University, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz65.06.105

Abstract

Extracellular vesicles have a lot of different physiological functions: from regulation of gene expression to direct cytotoxic effects. There is a selective mechanism that combines the formation of new vesicles, their receptions, and the complex processing of the content. Vesicle recycling and reception is a versatile process that involves evolutionaryconservative factors. Vesicles and viruses use the same molecular mechanisms to enter and exit cells. The most unusual regulators of cellular physiology mediated by vesicles are many types of vesicular RNA and atypical lipid profile of their membranes. The physiological potential of extracellular vesicles is still unexplored, despite the abundance of new data. It can be assumed that current research brings us closer to understanding of integrative biological events that will allow us to correct physiological functions in various pathological conditions.

Keywords: exosomes, physiology of intercellular signaling

References

  1. Lee HS, Jeong J, Lee KJ. Characterization of vesicles secreted from insulinoma NIT-1 cells. J Proteome Res. 2009 Jun;8(6): 2851-62. CrossRef PubMed
  2.  
  3. Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun. 2012;80(6):1948-57. CrossRef PubMed PubMedCentral
  4.  
  5. Choi DS, Kim DK, Kim YK, Gho YS. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics. 2013 May;13 (10-11):1554-71. CrossRef PubMed
  6.  
  7. Sadoul R, Laporte MH, Chassefeyre R, Chi KI, Goldberg Y, Chatellard C, et al. The role of ESCRT during development and functioning of the nervous system. Semin Cell Dev Biol. 2018 Feb;74:40-9. CrossRef PubMed
  8.  
  9. György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011 Aug; 68(16): 2667-88. CrossRef PubMed PubMedCentral
  10.  
  11. Antonyak MA, Cerione RA. Microvesicles as mediators of intercellular communication in cancer. Methods Mol Biol. 2014;1165:147-73. CrossRef PubMed
  12.  
  13. Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol. 2007 Apr 23; 177(2): 329-41. CrossRef PubMed PubMedCentral
  14.  
  15. Simons M, Raposo G. Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009 Aug; 21(4): 575-81. CrossRef PubMed
  16.  
  17. Choi DS, Lee J, Go G, Kim YK, Gho YS. Circulating extracellular vesicles in cancer diagnosis and monitoring: an appraisal of clinical potential. Mol Diagn Ther. 2013 Oct;17(5):265-71. CrossRef PubMed
  18.  
  19. Ratajczak J, Wysoczynski M, Hayek F, JanowskaWieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006 Sep;20(9):1487-95. CrossRef PubMed
  20.  
  21. Kim CW, Lee HM, Lee TH, Kang C, Kleinman HK, Gho YS. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res. 2002 Nov 1; 62(21):6312-7.
  22.  
  23. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008 May;10(5):619-24. CrossRef PubMed
  24.  
  25. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654-9. CrossRef PubMed
  26.  
  27. Bulgari D, Jha A, Deitcher DL, Levitan ES. Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release. Proc Natl Acad Sci USA. 2018 Feb 13;115(7):1617-22. CrossRef PubMed PubMedCentral
  28.  
  29. Christianson HC, Svensson KJ, Belting M. Exosome and microvesicle mediated phene transfer in mammalian cells. Seminars in cancer biology. 2014;28:31-8. CrossRef PubMed
  30.  
  31. van Dongen HM, Masoumi N, Witwer KW, Pegtel DM. Extracellular vesicles exploit viral entry routes for cargo delivery. Microbiology and molecular biology reviews: MMBR 2016;80(2):369-86. CrossRef PubMed PubMedCentral
  32.  
  33. Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M. Sorting it out: Regulation of exosome loading. Seminars in cancer biology 2014;28:3-13. CrossRef PubMed PubMedCentral
  34.  
  35. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284(49):34211-22. CrossRef PubMed PubMedCentral
  36.  
  37. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756-66. CrossRef PubMed PubMedCentral
  38.  
  39. Aryani A, Denecke B. Exosomes as a nanodelivery system: a Key to the future of neuromedicine? Mol neurobiol. 2016;53(2):818-21. CrossRef PubMed PubMedCentral
  40.  
  41. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracellular Vesicles. 2014;3. CrossRef PubMed PubMedCentral
  42.  
  43. Chivet M, Javalet C, Laulagnier K, Blot B, Hemming FJ, Sadoul R. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracellular Vesicles. 2014;3:24722. CrossRef PubMed PubMedCentral
  44.  
  45. Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005;106(5):1604-11. CrossRef PubMed
  46.  
  47. Alberts B, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. Garland Science. 2007. CrossRef  
  48. Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochimica et Biophysica Acta (BBA) Mol and Cell Biol of Lipids. 2014;1841(1):108-20. CrossRef PubMed
  49.  
  50. Record M. Intercellular communication by exosomes in placenta: A possible role in cell fusion? Placenta. 2014;35(5):297-302. CrossRef PubMed
  51.  
  52. Nakase I, Kobayashi NB, Takatani-Nakase T, Yoshida T. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes.  Sci Reports. 2015;5:10300. CrossRef PubMed PubMedCentral
  53.  
  54. Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, et al. Exosome uptake through clathrinmediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem. 2014;289(32):22258-67. CrossRef PubMed PubMedCentral
  55.  
  56. Fitzner D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti M, et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci. 2011;124(Pt 3):447-58. CrossRef PubMed
  57.  
  58. Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic (Copenhagen, Denmark). 2010;11(5):675-87. CrossRef PubMed
  59.  
  60. Barres C, Blanc L, Bette-Bobillo P, Andre S, Mamoun R, Gabius HJ, et al. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood. 2010;115(3):696-705. CrossRef PubMed
  61.  
  62. Nanbo A, Kawanishi E, Yoshida R, Yoshiyama H. Exosomes derived from Epstein-Barr virusinfected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J Virol. 2013;87(18):10334-47. CrossRef PubMed PubMedCentral
  63.  
  64. Svensson KJ, Christianson HC, Wittrup A, Bourseau-Guilmain E, Lindqvist E, Svensson LM, et al. Exosome uptake depends on ERK1. 2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem. 2013;288(24):17713-24. CrossRef PubMed PubMedCentral
  65.  
  66. Plebanek MP, Mutharasan RK, Volpert O, Matov A, Gatlin JC, Thaxton CS. Nanoparticle targeting and cholesterol flux through scavenger receptor type B-1 inhibits cellular exosome uptake. Sci Reports. 2015;5:15724. CrossRef PubMed PubMedCentral
  67.  
  68. Hazan-Halevy I, Rosenblum D, Weinstein S, Bairey O, Raanani P, Peer D. Cell-specific uptake of mantle cell lymphoma-derived exosomes by malignant and non-malignant B-lymphocytes. Cancer Lett. 2015;364(1):59-69. CrossRef PubMed PubMedCentral
  69.  
  70. Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011;89(8):836-43. CrossRef PubMed
  71.  
  72. Costa Verdera H, Gitz-Francois JJ, Schiffelers RM, Vader P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Controlled Release. 2017;266:100-8. CrossRef PubMed
  73.  
  74. Nakase I, Noguchi K, Fujii I, Futaki S. Vectorization of biomacromolecules into cells using extracellular vesicles with enhanced internalization induced by macropinocytosis. Sci Reports. 2016;6:34937. CrossRef PubMed PubMedCentral
  75.  
  76. Gordon S. Phagocytosis: An Immunobiologic Process. Immunity. 2016;44(3):463-75. CrossRef PubMed
  77.  
  78. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37-44. CrossRef PubMed
  79.  
  80. Fruhbeis C, Frohlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, et al. Neurotransmitter triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11(7): e1001604. CrossRef PubMed PubMedCentral
  81.  
  82. Lanzetti L, Di Fiore PP. Endocytosis and cancer: an 'insider' network with dangerous liaisons. Traffic (Copenhagen, Denmark). 2008;9(12): 2011-21. CrossRef PubMed
  83.  
  84. El-Sayed A, Harashima H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther. 2013;21(6):1118-30. CrossRef PubMed PubMedCentral
  85.  
  86. Escrevente C, Keller S, Altevogt P, Costa J. Interaction and uptake of exosomes by ovarian cancer cells. BMC cancer. 2011;11:108. CrossRef PubMed PubMedCentral
  87.  
  88. Koumangoye RB, Sakwe AM, Goodwin JS, Patel T, Ochieng J. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PloS One. 2011;6(9):e24234. CrossRef PubMed PubMedCentral
  89.  
  90. Zech D, Rana S, Buchler MW, Zoller M. Tumor-exosomes and leukocyte activation: an ambivalent crosstalk. Cell Comm Signal. 2012;10(1):37. CrossRef PubMed PubMedCentral
  91.  
  92. Calzolari A, Raggi C, Deaglio S, Sposi NM, Stafsnes M, Fecchi K, et al. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J Cell Sci. 2006; 119(Pt 21):4486-98. CrossRef PubMed
  93.  
  94. Johnstone RM, Bianchini A, Teng K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood. 1989;74(5):1844-51. CrossRef PubMed
  95.  
  96. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29(4):431-8. CrossRef PubMed PubMedCentral
  97.  
  98. Rajendran L, Simons K. Lipid rafts and membrane dynamics. J Cell Sci. 2005;118(Pt 6):1099-102. CrossRef PubMed
  99.  
  100. Cureton DK, Harbison CE, Cocucci E, Parrish CR, Kirchhausen T. Limited transferrin receptor clustering allows rapid diffusion of canine parvovirus into clathrin endocytic structures. J Virol. 2012;86(9):5330-40. CrossRef PubMed PubMedCentral
  101.  
  102. Moller-Tank S, Maury W. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology. 2014;468-70:565-80. CrossRef PubMed PubMedCentral
  103.  
  104. Jeong HS, Na KS, Hwang H, Oh PS, Kim DH, Lim ST, et al. Effect of space length of mannose ligand on uptake of mannosylated liposome in RAW 264.7 cells: In vitro and in vivo studies. J Biomed Materials Res Part A. 2014;102(12):4545-53. CrossRef PubMed
  105.  
  106. Kawauchi Y, Kuroda Y, Kojima N. Preferences for uptake of carbohydrate-coated liposomes by C-type lectin receptors as antigen-uptake receptors. Glycoconjugate J. 2012;29(7):481-90. CrossRef PubMed
  107.  
  108. Watson DC, Bayik D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials. 2016;105:195-205. CrossRef PubMed
  109.  
  110. Ritz S, Schottler S, Kotman N, Baier G, Musyanovych A, Kuharev J, et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules. 2015;16(4):1311-21. CrossRef PubMed
  111.  
  112. Gonda A, Kabagwira J, Senthil GN, Wall NR. Internalization of exosomes through receptor-mediated endocytosis. Mol Cancer Res. 2019 Feb;17(2):337-47. CrossRef PubMed
  113.  
  114. Carlton J1, Bujny M, Peter BJ, Oorschot VM, Rutherford A, Mellor H, Klumperman J, McMahon HT, Cullen PJ. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr Biol. 2004 Oct  26;14(20):1791-800. CrossRef PubMed
  115.  
  116. van Weering JR, Sessions RB, Traer CJ, et al. Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules. EMBO J. 2012 Nov 28;31(23):4466-80. CrossRef PubMed PubMedCentral
  117.  
  118. Burd C1, Cullen PJ. Retromer: a master conductor of endosome sorting. Cold Spring Harb Perspect Biol. 2014 Feb 1; 6(2). CrossRef PubMed PubMedCentral
  119.  
  120. McGough IJ, Cullen PJ. Recent advances in retromer biology. 2011. Traffic. 12(8):963-71. CrossRef PubMed
  121.  
  122. Zhang Y, Grant B, Hirsh D. RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. Mol Biol Cell. 2001;12(7): 2011-21. CrossRef PubMed PubMedCentral
  123.  
  124. Walsh P, Bursa D, Law YC, Cyr D, Lithgow T. The J-protein family: Modulating protein assembly, disassembly and translocation. EMBO Rep. 2004;5(6):567-71. CrossRef PubMed PubMedCentral
  125.  
  126. Ungewickell E, Ungewickell H, Holstein SE, Lindner R, Prasad K, Barouch W, et al. Role of auxilin in uncoating clathrin-coated vesicles. Nature. 1995 Dec 7;378(6557):632-5. CrossRef PubMed
  127.  
  128. Greener T, Grant B, Zhang Y, Wu X, Greene LE, Hirsh D, Eisenberg E. Caenorhabditis elegans auxilin: a J-domain protein essential for clathrin-mediated endocytosis in vivo. Nat Cell Biol. 2001 Feb;3(2):215-9. CrossRef PubMed
  129.  
  130. Shi A, Sun L, Banerjee R, Tobin M, Zhang Y, Grant BD. Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO J. 2009 Nov 4;28(21):3290-302. CrossRef PubMed PubMedCentral
  131.  
  132. Popoff V, Mardones GA, Bai SK, Chambon V, Tenza D, Burgos PV, et al. Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Traffic. 2009 Dec;10(12):1868-80. CrossRef PubMed
  133.  
  134. Xhabija B, Vacratsis PO. Receptor-mediated endocytosis 8 utilizes an N-terminal phosphoinositide-binding motif to regulate endosomal clathrin dynamics. J Biol Chem. 2015;290(35):21676-89. CrossRef PubMed PubMedCentral
  135.  
  136. Fujibayashi A1, Taguchi T, Misaki R, Ohtani M, Dohmae N, Takio K, et al. Human RME-8 is involved in membrane trafficking through early endosomes. Cell Struct Funct. 2008;33(1):35-50. CrossRef PubMed
  137.  
  138. Freeman CL, Hesketh G, Seaman MN. RME-8 coordinates the activity of the WASH complex with the function of the retromer SNX dimer to control endosomal tubulation. J Cell Sci. 2014, 127(pt 9):2053-70. CrossRef PubMed PubMedCentral
  139.  
  140. Hurley JH. The ESCRT complexes. Crit Rev Biochem Mol Biol. 2010;45(6):463-87. CrossRef PubMed PubMedCentral
  141.  
  142. Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol. 2011 Aug; 23(4):452-7. CrossRef PubMed PubMedCentral
  143.  
  144. Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell. 2011;21(1):77-91. CrossRef PubMed
  145.  
  146. Polo S, Sigismund S, Faretta M, Guidi M, Capua MR, Bossi G, et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature. 2002 Mar 28;416(6879):451-5. CrossRef PubMed
  147.  
  148. Bishop N, Horman A, Woodman P. Mammalian class E vps proteins recognize ubiquitin and act in the removal of endosomal protein-ubiquitin conjugates. J Cell Biol. 2002; 157(1):91-101. CrossRef PubMed PubMedCentral
  149.  
  150. Hofmann K, Falquet L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci. 2001;26(6):347-50. CrossRef  
  151. Raiborg C, Stenmark H. Hrs and endocytic sorting of ubiquitinated membrane proteins. Cell Struct Funct. 2002;27(6):403-8. CrossRef PubMed
  152.  
  153. Raiborg C, Bache KG, Gillooly DJ, Madshus IH, Stang E, Stenmark H. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol. 2002 May;4(5):394-8. CrossRef PubMed
  154.  
  155. Raiborg C, Bremnes B, Mehlum A, Gillooly DJ, D'Arrigo A, Stang E, Stenmark H. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J Cell Sci. 2001 Jun;114(Pt 12):2255-63.
  156.  
  157. Sönnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol. 2000; 149(4):901-14. CrossRef PubMed PubMedCentral
  158.  
  159. Sachse M, Urbé S, Oorschot V, Strous GJ, Klumperman J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol Biol Cell. 2002;13(4):1313-28. CrossRef PubMed PubMedCentral
  160.  
  161. Norris A, Tammineni P, Wang S, Gerdes J, Murr A, Kwan KY3, Cai Q, Grant BD. SNX-1 and RME-8 oppose the assembly of HGRS-1. ESCRT-0 degradative microdomains on endosomes. Proc Natl Acad Sci USA. 2017 Jan 17;114(3):E307-E316. CrossRef PubMed PubMedCentral
  162.  
  163. Teis D, Saksena S, Emr SD. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell. 2008,15(4):578-89. CrossRef PubMed
  164.  
  165. Sadoul R. Do Alix and ALG-2 really control endosomes for better or for worse? Biol Cell. 2006 Jan; 98(1):69-77. CrossRef PubMed
  166.  
  167. Bissig C, Gruenberg J. ALIX and the multivesicular endosome: ALIX in Wonderland, Trends Cell Biol. 2014;24(1):19-25. CrossRef PubMed
  168.  
  169. Doyotte A, Mironov A, McKenzie E, Woodman P. The Bro1-related protein HDPTP. PTPN23 is required for endosomal cargo sorting and multivesicular body morphogenesis, Proc Natl Acad Sci USA. 2008; 105(17):6308-13. CrossRef PubMed PubMedCentral
  170.  
  171. Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, et al. Tsg101 and thevacuolar protein sorting pathway are essential for HIV-1 budding. Cell. 2001;107(1):55-65. CrossRef  
  172. Strack B, Calistri A, Craig S, Popova E, Gottlinger HG. AIP1. ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding, Cell. 2003;114(6):689-99. CrossRef  
  173. Martin-Serrano J, Yarovoy A, Perez-Caballero D, Bieniasz PD, Divergent retroviral latebudding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci USA. 2003;100(21):12414-9. CrossRef PubMed PubMedCentral
  174.  
  175. Segura-Morales C, Pescia C, Chatellard-Causse C, Sadoul R, Bertrand E, Basyuk E. Tsg101 and Alix interact with murine leukemia virus Gag and cooperate with Nedd4 ubiquitin ligases during budding. J Biol Chem. 2005; 280(29):27004-12. CrossRef PubMed
  176.  
  177. Morita E, Sandrin V, McCullough J, Katsuyama A, Baci Hamilton I, Sundquist WI. ESCRTIII Protein Requirements for HIV-1 Budding, Cell Host Microbe. 2011;9(3):235-42. CrossRef PubMed PubMedCentral
  178.  
  179. Sandrin V, Sundquist WI. ESCRT requirements for EIAV budding, Retrovirology. 2013;10, 104. CrossRef PubMed PubMedCentral
  180.  
  181. Bartusch C, Prange R. ESCRT Requirements for Murine Leukemia Virus Release. Viruses. 2016;8(4):103. CrossRef PubMed PubMedCentral
  182.  
  183. Carlton JG, Martin-Serrano J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science. 2007; 316(5833):1908-12. CrossRef PubMed
  184.  
  185. Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. Embo J. 2007;26(19):4215-27. CrossRef PubMed PubMedCentral
  186.  
  187. Guizetti J, Schermelleh L, Mäntler J, Maar S, Poser I, Leonhardt H, et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science. 2011 Mar 25;331(6024):1616-20. CrossRef PubMed
  188.  
  189. Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Divoux S, Piel M, Perez F. ESCRT machinery is required for plasma membrane repair. Science. 2014 Feb 28;343(6174):1247-136. CrossRef PubMed
  190.  
  191. Scheffer LL, Sreetama SC, Sharma N, Medikayala S, Brown KJ, Defour A, Jaiswal JK. Mechanism of Ca²⁺- triggered ESCRT assembly and regulation of cell membrane repair. Nat Commun. 2014 Dec;23(5):5646. CrossRef PubMed PubMedCentral
  192.  
  193. Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci USA. 2012 Mar 13;109(11):4146-51. CrossRef PubMed PubMedCentral
  194.  
  195. Matusek T, Wendler F, Polès S, Pizette S, D'Angelo G, Fürthauer M, Thérond PP. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature. 2014 Dec 4; 516(7529):99-103. CrossRef PubMed
  196.  
  197. Webster BM, Colombi P, Jäger J, Lusk CP. Surveillance of nuclear pore complex assembly by ESCRT-III. Vps4. Cell. 2014 Oct 9;159(2):388-401. CrossRef PubMed PubMedCentral
  198.  
  199. Olmos Y, Hodgson L, Mantell J, Verkade P, Carlton JG. ESCRT-III controls nuclear envelope reformation. Nature. 2015 Jun 11;522(7555):236-9. CrossRef PubMed PubMedCentral
  200.  
  201. Vietri M, Schink KO, Campsteijn C, Wegner CS, Schultz SW, Christ L, et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature. 2015 Jun 11;522(7555):231-5. CrossRef PubMed
  202.  
  203. Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M, Weigelin B, et al. Nuclear envelope rupture and repair during cancer cell migration. Science. 2016 Apr 15;352(6283):353-8. CrossRef PubMed PubMedCentral
  204.  
  205. Raab M, Gentili M, de Belly H, Thiam HR, Vargas P, Jimenez AJ, et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science. 2016 Apr 15;352(6283):359-62. CrossRef PubMed
  206.  
  207. Sadoul R, Laporte MH, Chassefeyre R, Chi KI, Goldberg Y, Chatellard C, et al. The role of ESCRT during development and functioning of the nervous system. Semin Cell Dev Biol. 2018 Feb; 74:40-9. CrossRef PubMed
  208.  
  209. Hanyaloglu, AC, and von Zastrow M. A novel sorting sequence in the beta2-adrenergic receptor switches recycling from default to the Hrs-dependent mechanism. J Biol Chem. 2007, 282:3095-104. CrossRef PubMed
  210.  
  211. Huang SH, Zhao L, Sun ZP, Li XZ, Geng Z, Zhang KD, et al. Essential role of Hrs in endocytic recycling of fulllength TrkB receptor but not its isoform TrkB.T1. J Biol Chem. 2009, 284:15126-36. CrossRef PubMed PubMedCentral
  212.  
  213. MacDonald, Brown E, Selvais L, Liu A , Waring H, Newman T, et al. HRS-WASH axis governs actin-mediated endosomal recycling and cell invasion. J Cell Biol. 2018 Jul 2; 217(7):2549-64. CrossRef PubMed PubMedCentral
  214.  
  215. Zech, T, Calaminus SD, Caswell P, Spence HJ, Carnell M, Insall RH, et al. The Arp2. 3 activator WASH regulates α5β1-integrin-mediated invasive migration. J Cell Sci. 2011;124:3753-59. CrossRef PubMed PubMedCentral
  216.  
  217. Dozynkiewicz MA, Jamieson NB, Macpherson I, Grindlay J, van den Berghe PV, von Thun A, et al. Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes. lysosomes and drive cancer progression. Dev Cell. 2012;22:131-45. CrossRef PubMed PubMedCentral
  218.  
  219. Macpherson IR, Rainero E, Mitchell LE, van den Berghe PV, Speirs C, Dozynkiewicz MA, et al. CLIC3 controls recycling of late endosomal MT1-MMP and dictates invasion and metastasis in breast cancer. J Cell Sci. 2014;127:3893-901. CrossRef PubMed
  220.  
  221. Harbour ME, Breusegem SY, Antrobus R. Freeman C, Reid E, Seaman MN. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J Cell Sci. 2010;123:3703-17. CrossRef PubMed PubMedCentral
  222.  
  223. Harbour ME, Breusegem SY, and Seaman MN. Recruitment of the endosomal WASH complex is mediated by the extended 'tail' of Fam21 binding to the retromer protein Vps35. Biochem J. 2012;442:209-20. CrossRef PubMed
  224.  
  225. Jia D, Gomez TS, Billadeau DD, and Rosen MK. Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer. Mol Biol Cell. 2012;23:2352-61. CrossRef PubMed PubMedCentral
  226.  
  227. Pons V, Luyet PP, Morel E, Abrami L, van der Goot FG, Parton RG, and Gruenberg J. Hrs and SNX3 functions in sorting and membrane invagination within multivesicular bodies. PLoS Biol. 2008;6:e214. CrossRef PubMed PubMedCentral
  228.  
  229. Urbé S, Mills IG, Stenmark H, Kitamura N, and Clague MJ. Endosomal localization and receptor dynamics determine tyrosine phosphorylation of hepatocyte growth factor-regulated tyrosine kinase substrate. Mol Cell Biol. 2000;20:7685-92. CrossRef PubMed PubMedCentral
  230.  
  231. Mao Y, Nickitenko A, Duan X, Lloyd TE, Wu MN, Bellen H, and Quiocho FA. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved  in membrane trafficking and signal transduction. Cell. 2000;100:447-56. CrossRef  
  232. Puertollano R, Aguilar RC, Gorshkova I, Crouch RJ, and Bonifacino JS. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science. 2001,292:1712-16. CrossRef PubMed
  233.  
  234. Misra S, Puertollano R, Kato Y, Bonifacino JS, and Hurley JH. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature. 2002;415:933-37. CrossRef PubMed
  235.  
  236. Ren X, and Hurley JH. VHS domains of ESC RT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J. 2010;29:1045-54. CrossRef PubMed PubMedCentral
  237.  
  238. Calderwood DA, Shattil SJ, and Ginsberg MH. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem. 2000;275:22607-10. CrossRef PubMed
  239.  
  240. Jiang G, Giannone G, Critchley D, Fukumoto R, and Sheetz MP. Two-piconewton slip bond between fibronectin and the E. Cytoskeleton depends on talin. Nature. 2003;424:334-7. CrossRef PubMed
  241.  
  242. Puthenveedu MA, Lauffer B, Temkin P, Vistein R, Carlton P, Thorn K et al. Sequence-dependent sorting of recycling proteins by actin-stabilized endosomal microdomains. Cell. 2010;143:761-73. CrossRef PubMed PubMedCentral
  243.  
  244. Zech T, Calaminus SD, and Machesky LM. Actin on trafficking: could actin guide directed receptor transport? Cell Adhes. Migr. 2012;6:476-81. CrossRef PubMed PubMedCentral
  245.  
  246. Huang F, Kirkpatrick D, Jiang X, Gygi S, and Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006;21:737-48. CrossRef PubMed
  247.  
  248. Row PE, Clague MJ, and Urbé S. Growth factors induce differential phosphorylation profiles of the Hrs-STAM complex: a common node in signalling networks with signal-specific properties. Biochem J. 2005;389:629-636. CrossRef PubMed PubMedCentral
  249.  
  250. Ratajczak J, Miekus K, Kucia, M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006; 20:847-856. CrossRef PubMed
  251.  
  252. Skog, J, Wurdinger T, van Rijin S, Meijer DH, Gainche L, Curry WT, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470-6. CrossRef PubMed PubMedCentral
  253.  
  254. Tsatsaronis JA, Franch-Arroyo S, Resch U, Charpentier E. Extracellular vesicle RNA: A universal mediator of microbial communication? Trends Microbiol. 201;26:401-10. CrossRef PubMed
  255.  
  256. Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016;36:301-12. CrossRef PubMed PubMedCentral
  257.  
  258. Nolte-'t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, Hoen PA. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012;40:9272-85. CrossRef PubMed PubMedCentral
  259.  
  260. Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3'-untranslated regions. Biol Direct. 2013;8:12. CrossRef PubMed PubMedCentral
  261.  
  262. Lefebvre FA, Benoit Bouvrette LP, Perras L, BlanchetCohen A, Garnier D, Rak J, et al. Comparative transcriptomic analysis of human and Drosophila extracellular vesicles. Sci Rep. 2016;6:27680. CrossRef PubMed PubMedCentral
  263.  
  264. Wei Z, Batagov AO, Schinelli S, Wang J, Wang Y, El Fatimy R, et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun. 2017;8:1145. CrossRef PubMed PubMedCentral
  265.  
  266. Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Strobel T, Erkan EP, et al. miR-1289 and "zipcode"-like sequence enrich mRNA in microvesicles. J Extracell. Vesicles. 2012;1:2. CrossRef PubMed PubMedCentral
  267.  
  268. Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler, et al. KRAS-dependent sorting of miRNA to exosomes. eLife. 2015,4:e07197. CrossRef PubMed PubMedCentral
  269.  
  270. Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26:707-21. CrossRef PubMed PubMedCentral
  271.  
  272. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009;11:1143-9. CrossRef PubMed
  273.  
  274. Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980. CrossRef PubMed PubMedCentral
  275.  
  276. Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife. 2016;5. CrossRef PubMed PubMedCentral
  277.  
  278. Faury D, Nantel A, Dunn SE, Guiot MC, Haque T, Hauser P, et al. Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol. 2007;25:1196-208. CrossRef PubMed
  279.  
  280. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482:226-31. CrossRef PubMed
  281.  
  282. Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, et al. The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep. 2016;17:799-808. CrossRef PubMed
  283.  
  284. Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MAJ, Sadek P, Sie D, et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 2014; 8:1649-58. CrossRef PubMed
  285.  
  286. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285:17442-52. CrossRef PubMed PubMedCentral
  287.  
  288. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science (New York NY). 2008;319:1244-7. CrossRef PubMed
  289.  
  290. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA. 2014;111:14888-93. CrossRef PubMed PubMedCentral
  291.  
  292. Qin Y, Yao J, Wu DC, Nottingham RM, Mohr S, HunickeSmith S, Lambowitz AM. High-throughput sequencing of human plasma RNA by using thermostable group II intron reverse transcriptases. RNA. 2016 Jan;22(1):111-28. CrossRef PubMed PubMedCentral
  293.  
  294. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011 Mar 22;108(12):5003-8. CrossRef PubMed PubMedCentral
  295.  
  296. Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler M, et al. KRAS-dependent sorting of miRNA to exosomes. Elife. 2015 Jul,1;4:e07197. CrossRef PubMed PubMedCentral
  297.  
  298. Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife. 2016 Aug 25;5. pii: e19276. CrossRef PubMed PubMedCentral
  299.  
  300. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980. CrossRef PubMed PubMedCentral
  301.  
  302. Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, et al. The RNA-binding protein SYNCRIP is a component of the Hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep. 2016 Oct 11; 17(3):799-808. CrossRef PubMed
  303.  
  304. Mukherjee K, Ghoshal B, Ghosh S, Chakrabarty Y, Shwetha S, Das S, et al. Reversible HuR-microRNA binding controls extracellular export of miR-122 and augments stress response. EMBO Rep. 2016 Aug;17(8):1184-203. CrossRef PubMed PubMedCentral
  305.  
  306. Shurtleff MJ, Yao J, Qin Y, Nottingham RM, TemocheDiaz MM, Schekman R, et al. Broad role for YBX1 in defining the small noncoding RNA composition of exosomes. Proc Natl Acad Sci USA. 2017 Oct 24;114(43):E8987-E995. CrossRef PubMed PubMedCentral
  307.  
  308. Janas T, Janas MM, Sapoń K, Janas T. Mechanisms of RNA loading into exosomes. FEBS Lett. 2015 Jun 4;589(13):1391-8. CrossRef PubMed
  309.  
  310. Wu BX, Clarke CJ, Matmati N, Montefusco D, Bartke N, and Hannun YA. Identification of novel anionic phospholipid binding domains in neutral sphingomyelinase 2 with selective binding preference. J Biol Chem. 2011;286,22362-71. CrossRef PubMed PubMedCentral
  311.  
  312. Rappa G, Mercapide J, Fabio Anzanello, Pope F, Lorico A. Biochemical and biological characterization of exosomes containing prominin-1. CD133. Mol Cancer 2013;12:62. CrossRef PubMed PubMedCentral
  313.  
  314. Record M, Carayon K, Poirot M, and Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta. 2014;1841,108-20. CrossRef PubMed
  315.  
  316. Kajimoto T, Okada T, Miya S, Lifang Zhang L, and Nakamura S. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat Commun. 2013;4,2712. CrossRef PubMed
  317.  
  318. Gulbins E and Kolesnick R. Raft ceramide in molecular medicine. Oncogene. 2003;22,7070-77. CrossRef PubMed
  319.  
  320. Chiantia S, Kahya N, Ries J and Schwille P. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys J. 2006;90,4500-8. CrossRef PubMed PubMedCentral
  321.  
  322. Johnston I and Johnston LJ. Ceramide promotes restructuring of model raft membranes. Langmuir. 2006;22,11284-9. CrossRef PubMed
  323.  
  324. Nurminen TA, Holopainen JM, Zhao H and Kinnunen PKJ. Observation of topical catalysis by sphingomyelinase coupled to microspheres. J Am Chem Soc. 2002;124,12129-34. CrossRef PubMed
  325.  
  326. Vyas P, Balakier H, Librach CL. Ultrastructural identification of CD9 positive extracellular vesicles released from human embryos and transported through the zona pellucida. Syst Biol Reprod Med. 2019 Aug;65(4):273-80. CrossRef PubMed
  327.  
  328. Hayashi T, Hoffman MP. Exosomal microRNA communication between tissues during organogenesis. RNA Biol. 2017 Dec 2;14(12):1683-9. CrossRef PubMed PubMedCentral
  329.  
  330. Giacomini E, Alleva E, Fornelli G, Quartucci A, Privitera L, Vanni VS, et al. Embryonic extracellular vesicles as informers to the immune cells at the maternal-fetal interface. Clin Exp Immunol. 2019 Apr 22. CrossRef PubMed
  331.  
  332. Choi D, Lee TH, Spinelli C, Chennakrishnaiah S, D'Asti E, Rak J. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin Cell Dev Biol. 2017 Jul;67:11-22. CrossRef PubMed
  333.  
  334. Hong SB, Yang H, Manaenko A, Lu J, Mei Q, Hu Q. Potential of Exosomes for the Treatment of Stroke. Cell Transplant. 2018 Dec 6:963-8. CrossRef PubMed PubMedCentral
  335.  
  336. Zhu L, Kalimuthu S, Gangadaran P, Oh JM, Lee HW, Baek SH, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics. 2017 Jul 7;7(10):2732-45. CrossRef PubMed PubMedCentral
  337.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2020.