Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2010; 56(1): 143-148


A HOPPING MODEL FOR ONE-DIMENSIONAL DIFFUSION OF NANOPARTICLES AND MOTOR PROTEINS ALONG MICROTUBULES

S. Gaidar, M. Chashchyn

  1. Taras Shevchenko National University of Kyiv, Ukraine
  2. Institute of Molecular Biology and Genetics NAS of Ukraine, Ukraine
DOI: https://doi.org/10.15407/fz56.01.143

Abstract

One-dimensional diffusion is a mechanism for positively charged structures (e.g. nanoparticles, DNA bound proteins, motor proteins) to translocate along a single molecule of negatively charged linear polyelectrolyte such as microtubules or DNA. Kinesins and dynein are motor proteins that move cargoes (e.g. vesicles, organelles, chromosomes, virus particles) through the eukaryotic cell cytoplasm along microtubules. Myosin is actin based motor protein that also capable of diffusion on microtubules, significantly enhancing the processive run length of kinesin when both motors are present on the same cargo. Defective transport of cell components by motor proteins is implicated in such diseases as Alzheimer’s disease, polycystic kidney disease, neuropathy of CharcotMarie Tooth, neuroblastomas, neurofibromatosis, rheumatoid arthritis, hypertrophic cardiomyopathy and deafness. However, little is known about the precise mechanism of motor proteins movement along the microtubules. The phenomenon of onedimensional diffusive motion along microtubules is presumed to underlay this mechanism. In this paper, a similar phenomenon described for DNA binding proteins is reviewed. Based on kinesin-like nanoparticles as an experimental model, a theoretical model for one-dimensional diffusive motion of kinesins along microtubules is proposed. The motion is explained by the hopping process: combination of one-dimensional (sliding) and three-dimensional (hops) diffusions. Non-linear dependence of kinesin and nanoparticle diffusion constant on ionic strength is proposed to be underlain by polyampholyte structure of microtubules.

Keywords: Kinesin, motor proteins, microtubules, diffusion, nanoparticles.

References

  1. Ali M.Y., Lu H., Bookwalter C.S. et al. Myosin V and Kinesin act as tethers to enhance each others’ processivity . Proc. Natl. Acad. Sci. USA.  2008. Mar 25; 105(12).  P. 4691-4696. CrossRef  
  2. Berg H.C. Random Walks in Biology.  Princeton: Princeton Univ. Press, 1993.  400 p.
  3.  
  4. Blainey P.C., van Oijen A.M., Banerjee A. et al. A baseexcision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA . Proc. Natl .Acad. Sci. USA.  2006.  103.  P. 5752-5757. CrossRef  
  5. Bonnet I., Biebricher A., Porté P.L. et al. Sliding and jumping of single EcoRV restriction enzymes on noncognate DNA . Nucleic Acids Res.  2008.  36. P. 4118-4127. CrossRef  
  6. Diefenbach R.J., Miranda-Saksena M., Diefenbach E. et al. Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain . J. Virol.  2002.  76.  P. 3282-3291. CrossRef  
  7. Dixit R., Ross J.L., Goldman Y.E. et al. Differential regulation of dynein and kinesin motor proteins by tau . Science.  2008.  319.  P. 1086-1089. CrossRef  
  8. Furuta K., Toyoshima Y.Y. Minus-end-directed motor Ncd exhibits processive movement that is enhanced by microtubule bundling in vitro . Curr Biol.  2008. 18.  P. 152-157. CrossRef  
  9. Gorman J., Chowdhury A., Surtees J.A. et al. Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6 . Mol. Cell. 2007.  28.  P. 359-370. CrossRef  
  10. Granéli A., Yeykal C.C., Robertson R.B. et al. Longdistance lateral diffusion of human Rad51 on doublestranded DNA . Proc. Natl. Acad. Sci. USA.  2006. 103.  P. 1221-1226. CrossRef  
  11. Hakimi M.A., Speicher D.W., Shiekhattar R. The motor protein kinesin-1 links neurofibromin and merlin in a common cellular pathway of neurofibromatosis . J. Biol. Chem.  2002.  277 p. CrossRef  
  12. Ibanez-Tallon I. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus . Hum. Mol. Genet.  2002.  11.  P. 715-721. CrossRef  
  13. Kamal A., Almenar-Queralt A., LeBlanc J.F. et al. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin- 1 requires APP . Nature.  2001.  414.  P. 643-648. CrossRef  
  14. Kapitein L.C., Kwok B.H., Weinger J.S. et al. Microtubule cross-linking triggers the directional motility of kinesin-5 . J. Cell Biol.  2008.  182.  P. 421-428. CrossRef  
  15. Kelley M.J. Mutation of MYH9, encoding non-muscle myosin heavy chain A, in May-Hegglin anomaly . Nat. Genet.  2000.  26.  P. 106-108. CrossRef  
  16. Komazin-Meredith G., Mirchev R., Golan D.E. et al. Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion . Proc. Natl. Acad. Sci. USA.  2008.  105.  P. 10721-10726. CrossRef  
  17. Kullmann F., Judex M., Ballhorn W. et al. Kinesin-like protein CENP-E is upregulated in rheumatoid synovial fibroblasts . Arthritis Res.  1999.  1.  P. 71-80.
  18.  
  19. Marszalek J.R., Liu X., Roberts E.A. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors . Cell. 2000.  102.  P. 175-187. CrossRef  
  20. Melchionda S. et al. MYO6, the human homologue of the gene responsible for deafness in Snell’s waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss . Amer. J. Hum. Genet.  2002.  69. P. 635-640. CrossRef  
  21. Minoura I., Muto E. Dielectric measurement of individual microtubules using the electroorientation method . Biophys J.  2006.  90.  P. 3739-3748. CrossRef  
  22. Minoura I., Muto E. One-dimensional diffusion of charged nanoparticles along microtubules . Biophysics J.  2006.  46.  P. S218. CrossRef  
  23. Miyamoto Y., Muto E., Mashimo T. et al. Direct inhibition of microtubule-based kinesin motility by local anesthetics . Biophys. J.  2000.  78.  P. 940-949. CrossRef  
  24. Nonaka S., Tanaka Y., Okada Y. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein . Cell.  1998.  95.  P.829-837. CrossRef  
  25. Ohira M., Kageyama H., Mihara M. et al. Identification and characterization of a 500-kb homozygously deleted region at 1p36.2-p36.3 in a neuroblastoma cell line . Oncogene.  2000. 19.  P. 430-432. CrossRef  
  26. Okada Y., Higuchi H., Hirokawa N. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin . Nature.  2003.  424.  P. 574-577. CrossRef  
  27. Pazour G.J., Rosenbaum J. Intraflagellar transport and cilia-dependent diseases . Trends Cell Biol.  2002. 12.  P. 551-555. CrossRef  
  28. Provance D.W. Melanophilin, the product of the leaden locus, is required for targeting of myosin-Va to melanosomes . Traffic.  2002, ¹3.  Ð. 124-132. CrossRef  
  29. Qin H., Rosenbaum J.L., Barr M.M. An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons . Curr. Biol.  2001.  11. P. 457-461. CrossRef  
  30. Seidman J.G., Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms . Cell.  2001.  104.  P. 557-567. CrossRef  
  31. Seyrek E., Dubin PL., Tribet C. et al. Ionic strength dependence of protein-polyelectrolyte interactions . Biomacromolecules.  2003.  4.  P. 273-282. CrossRef  
  32. Tafvizi A., Huang F., Leith J.S. et al. Tumor suppressor p53 slides on DNA with low friction and high stability . Biophys J.  2008.  95.  P. L01-L013. CrossRef  
  33. Tai C.Y. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function . J. Cell Biol. 2002.  156.  P. 959-968. CrossRef  
  34. Vale R.D., Soll D.R., Gibbons I.R. One-dimensional diffusion of microtubules bound to flagellar dynein . Cell.  1989.  Dec 1. 59(5).  P. 915-925. CrossRef  
  35. Walsh T. et al. From flies’ eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30 . Proc. Natl. Acad. Sci. USA.  2002. 99.  P. 7518-7523. CrossRef  
  36. Wang Y.M., Austin R.H., Cox E.C. Single molecule measurements of repressor protein 1D diffusion on DNA . Physipl Rev Lett.  2006.  97.  P. 048302. CrossRef  
  37. Wang A. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3 . Science.  1998.  280.  P. 1447-1451. CrossRef  
  38. Watts N.R., Sackett D.L., Ward R.D. et al. HIV-1 rev depolymerizes microtubules to form stable bilayered rings . J. Cell Biol.  2000.  150.  P. 349-360. CrossRef  
  39. Zhao C., Takita J., Tanaka Y. et al. Charcot-MarieTooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta . Cell.  2001.  105. P. 587-597. CrossRef

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.