|
|
|
|
A HOPPING MODEL FOR ONE-DIMENSIONAL DIFFUSION OF NANOPARTICLES AND MOTOR PROTEINS ALONG MICROTUBULES
S. Gaidar, M. Chashchyn
- Taras Shevchenko National University of Kyiv, Ukraine
- Institute of Molecular Biology and Genetics NAS of Ukraine, Ukraine
DOI: https://doi.org/10.15407/fz56.01.143
Abstract
One-dimensional diffusion is a mechanism for positively
charged structures (e.g. nanoparticles, DNA bound proteins,
motor proteins) to translocate along a single molecule of negatively
charged linear polyelectrolyte such as microtubules or
DNA. Kinesins and dynein are motor proteins that move cargoes
(e.g. vesicles, organelles, chromosomes, virus particles)
through the eukaryotic cell cytoplasm along microtubules.
Myosin is actin based motor protein that also capable of diffusion
on microtubules, significantly enhancing the processive
run length of kinesin when both motors are present on the
same cargo. Defective transport of cell components by motor
proteins is implicated in such diseases as Alzheimers disease,
polycystic kidney disease, neuropathy of CharcotMarie
Tooth, neuroblastomas, neurofibromatosis, rheumatoid arthritis,
hypertrophic cardiomyopathy and deafness. However,
little is known about the precise mechanism of motor proteins
movement along the microtubules. The phenomenon of onedimensional
diffusive motion along microtubules is presumed
to underlay this mechanism. In this paper, a similar phenomenon
described for DNA binding proteins is reviewed. Based
on kinesin-like nanoparticles as an experimental model, a theoretical
model for one-dimensional diffusive motion of kinesins
along microtubules is proposed. The motion is explained by
the hopping process: combination of one-dimensional (sliding)
and three-dimensional (hops) diffusions. Non-linear
dependence of kinesin and nanoparticle diffusion constant on
ionic strength is proposed to be underlain by polyampholyte
structure of microtubules.
Keywords:
Kinesin, motor proteins, microtubules, diffusion, nanoparticles.
References
- Ali M.Y., Lu H., Bookwalter C.S. et al. Myosin V and Kinesin act as tethers to enhance each others processivity . Proc. Natl. Acad. Sci. USA. 2008. Mar 25; 105(12). P. 4691-4696.
CrossRef
- Berg H.C. Random Walks in Biology. Princeton: Princeton Univ. Press, 1993. 400 p.
- Blainey P.C., van Oijen A.M., Banerjee A. et al. A baseexcision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA . Proc. Natl .Acad. Sci. USA. 2006. 103. P. 5752-5757.
CrossRef
- Bonnet I., Biebricher A., Porté P.L. et al. Sliding and jumping of single EcoRV restriction enzymes on noncognate DNA . Nucleic Acids Res. 2008. 36. P. 4118-4127.
CrossRef
- Diefenbach R.J., Miranda-Saksena M., Diefenbach E. et al. Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain . J. Virol. 2002. 76. P. 3282-3291.
CrossRef
- Dixit R., Ross J.L., Goldman Y.E. et al. Differential regulation of dynein and kinesin motor proteins by tau . Science. 2008. 319. P. 1086-1089.
CrossRef
- Furuta K., Toyoshima Y.Y. Minus-end-directed motor Ncd exhibits processive movement that is enhanced by microtubule bundling in vitro . Curr Biol. 2008. 18. P. 152-157.
CrossRef
- Gorman J., Chowdhury A., Surtees J.A. et al. Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6 . Mol. Cell. 2007. 28. P. 359-370.
CrossRef
- Granéli A., Yeykal C.C., Robertson R.B. et al. Longdistance lateral diffusion of human Rad51 on doublestranded DNA . Proc. Natl. Acad. Sci. USA. 2006. 103. P. 1221-1226.
CrossRef
- Hakimi M.A., Speicher D.W., Shiekhattar R. The motor protein kinesin-1 links neurofibromin and merlin in a common cellular pathway of neurofibromatosis . J. Biol. Chem. 2002. 277 p.
CrossRef
- Ibanez-Tallon I. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus . Hum. Mol. Genet. 2002. 11. P. 715-721.
CrossRef
- Kamal A., Almenar-Queralt A., LeBlanc J.F. et al. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin- 1 requires APP . Nature. 2001. 414. P. 643-648.
CrossRef
- Kapitein L.C., Kwok B.H., Weinger J.S. et al. Microtubule cross-linking triggers the directional motility of kinesin-5 . J. Cell Biol. 2008. 182. P. 421-428.
CrossRef
- Kelley M.J. Mutation of MYH9, encoding non-muscle myosin heavy chain A, in May-Hegglin anomaly . Nat. Genet. 2000. 26. P. 106-108.
CrossRef
- Komazin-Meredith G., Mirchev R., Golan D.E. et al. Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion . Proc. Natl. Acad. Sci. USA. 2008. 105. P. 10721-10726.
CrossRef
- Kullmann F., Judex M., Ballhorn W. et al. Kinesin-like protein CENP-E is upregulated in rheumatoid synovial fibroblasts . Arthritis Res. 1999. 1. P. 71-80.
- Marszalek J.R., Liu X., Roberts E.A. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors . Cell. 2000. 102. P. 175-187.
CrossRef
- Melchionda S. et al. MYO6, the human homologue of the gene responsible for deafness in Snells waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss . Amer. J. Hum. Genet. 2002. 69. P. 635-640.
CrossRef
- Minoura I., Muto E. Dielectric measurement of individual microtubules using the electroorientation method . Biophys J. 2006. 90. P. 3739-3748.
CrossRef
- Minoura I., Muto E. One-dimensional diffusion of charged nanoparticles along microtubules . Biophysics J. 2006. 46. P. S218.
CrossRef
- Miyamoto Y., Muto E., Mashimo T. et al. Direct inhibition of microtubule-based kinesin motility by local anesthetics . Biophys. J. 2000. 78. P. 940-949.
CrossRef
- Nonaka S., Tanaka Y., Okada Y. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein . Cell. 1998. 95. P.829-837.
CrossRef
- Ohira M., Kageyama H., Mihara M. et al. Identification and characterization of a 500-kb homozygously deleted region at 1p36.2-p36.3 in a neuroblastoma cell line . Oncogene. 2000. 19. P. 430-432.
CrossRef
- Okada Y., Higuchi H., Hirokawa N. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin . Nature. 2003. 424. P. 574-577.
CrossRef
- Pazour G.J., Rosenbaum J. Intraflagellar transport and cilia-dependent diseases . Trends Cell Biol. 2002. 12. P. 551-555.
CrossRef
- Provance D.W. Melanophilin, the product of the leaden locus, is required for targeting of myosin-Va to melanosomes . Traffic. 2002, ¹3. Ð. 124-132.
CrossRef
- Qin H., Rosenbaum J.L., Barr M.M. An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons . Curr. Biol. 2001. 11. P. 457-461.
CrossRef
- Seidman J.G., Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms . Cell. 2001. 104. P. 557-567.
CrossRef
- Seyrek E., Dubin PL., Tribet C. et al. Ionic strength dependence of protein-polyelectrolyte interactions . Biomacromolecules. 2003. 4. P. 273-282.
CrossRef
- Tafvizi A., Huang F., Leith J.S. et al. Tumor suppressor p53 slides on DNA with low friction and high stability . Biophys J. 2008. 95. P. L01-L013.
CrossRef
- Tai C.Y. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function . J. Cell Biol. 2002. 156. P. 959-968.
CrossRef
- Vale R.D., Soll D.R., Gibbons I.R. One-dimensional diffusion of microtubules bound to flagellar dynein . Cell. 1989. Dec 1. 59(5). P. 915-925.
CrossRef
- Walsh T. et al. From flies eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30 . Proc. Natl. Acad. Sci. USA. 2002. 99. P. 7518-7523.
CrossRef
- Wang Y.M., Austin R.H., Cox E.C. Single molecule measurements of repressor protein 1D diffusion on DNA . Physipl Rev Lett. 2006. 97. P. 048302.
CrossRef
- Wang A. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3 . Science. 1998. 280. P. 1447-1451.
CrossRef
- Watts N.R., Sackett D.L., Ward R.D. et al. HIV-1 rev depolymerizes microtubules to form stable bilayered rings . J. Cell Biol. 2000. 150. P. 349-360.
CrossRef
- Zhao C., Takita J., Tanaka Y. et al. Charcot-MarieTooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta . Cell. 2001. 105. P. 587-597.
CrossRef
|
|
|
|
|
|
|