Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2010; 56(1): 143-148


A HOPPING MODEL FOR ONE-DIMENSIONAL DIFFUSION OF NANOPARTICLES AND MOTOR PROTEINS ALONG MICROTUBULES

S. Gaidar, M. Chashchyn

  1. Taras Shevchenko National University of Kyiv, Ukraine
  2. Institute of Molecular Biology and Genetics NAS of Ukraine, Ukraine
DOI: https://doi.org/10.15407/fz56.01.143


Abstract

One-dimensional diffusion is a mechanism for positively charged structures (e.g. nanoparticles, DNA bound proteins, motor proteins) to translocate along a single molecule of negatively charged linear polyelectrolyte such as microtubules or DNA. Kinesins and dynein are motor proteins that move cargoes (e.g. vesicles, organelles, chromosomes, virus particles) through the eukaryotic cell cytoplasm along microtubules. Myosin is actin based motor protein that also capable of diffusion on microtubules, significantly enhancing the processive run length of kinesin when both motors are present on the same cargo. Defective transport of cell components by motor proteins is implicated in such diseases as Alzheimer’s disease, polycystic kidney disease, neuropathy of CharcotMarie Tooth, neuroblastomas, neurofibromatosis, rheumatoid arthritis, hypertrophic cardiomyopathy and deafness. However, little is known about the precise mechanism of motor proteins movement along the microtubules. The phenomenon of onedimensional diffusive motion along microtubules is presumed to underlay this mechanism. In this paper, a similar phenomenon described for DNA binding proteins is reviewed. Based on kinesin-like nanoparticles as an experimental model, a theoretical model for one-dimensional diffusive motion of kinesins along microtubules is proposed. The motion is explained by the hopping process: combination of one-dimensional (sliding) and three-dimensional (hops) diffusions. Non-linear dependence of kinesin and nanoparticle diffusion constant on ionic strength is proposed to be underlain by polyampholyte structure of microtubules.

Keywords: Kinesin, motor proteins, microtubules, diffusion, nanoparticles.

References

  1. Ali M.Y., Lu H., Bookwalter C.S. et al. Myosin V and Kinesin act as tethers to enhance each others’ processivity . Proc. Natl. Acad. Sci. USA.  2008. Mar 25; 105(12).  P. 4691-4696. CrossRef
  2.  
  3. Berg H.C. Random Walks in Biology.  Princeton: Princeton Univ. Press, 1993.  400 p.
  4.  
  5. Blainey P.C., van Oijen A.M., Banerjee A. et al. A baseexcision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA . Proc. Natl .Acad. Sci. USA.  2006.  103.  P. 5752-5757. CrossRef
  6.  
  7. Bonnet I., Biebricher A., Porté P.L. et al. Sliding and jumping of single EcoRV restriction enzymes on noncognate DNA . Nucleic Acids Res.  2008.  36. P. 4118-4127. CrossRef
  8.  
  9. Diefenbach R.J., Miranda-Saksena M., Diefenbach E. et al. Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain . J. Virol.  2002.  76.  P. 3282-3291. CrossRef
  10.  
  11. Dixit R., Ross J.L., Goldman Y.E. et al. Differential regulation of dynein and kinesin motor proteins by tau . Science.  2008.  319.  P. 1086-1089. CrossRef
  12.  
  13. Furuta K., Toyoshima Y.Y. Minus-end-directed motor Ncd exhibits processive movement that is enhanced by microtubule bundling in vitro . Curr Biol.  2008. 18.  P. 152-157. CrossRef
  14.  
  15. Gorman J., Chowdhury A., Surtees J.A. et al. Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6 . Mol. Cell. 2007.  28.  P. 359-370. CrossRef
  16.  
  17. Granéli A., Yeykal C.C., Robertson R.B. et al. Longdistance lateral diffusion of human Rad51 on doublestranded DNA . Proc. Natl. Acad. Sci. USA.  2006. 103.  P. 1221-1226. CrossRef
  18.  
  19. Hakimi M.A., Speicher D.W., Shiekhattar R. The motor protein kinesin-1 links neurofibromin and merlin in a common cellular pathway of neurofibromatosis . J. Biol. Chem.  2002.  277 p. CrossRef
  20.  
  21. Ibanez-Tallon I. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus . Hum. Mol. Genet.  2002.  11.  P. 715-721. CrossRef
  22.  
  23. Kamal A., Almenar-Queralt A., LeBlanc J.F. et al. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin- 1 requires APP . Nature.  2001.  414.  P. 643-648. CrossRef
  24.  
  25. Kapitein L.C., Kwok B.H., Weinger J.S. et al. Microtubule cross-linking triggers the directional motility of kinesin-5 . J. Cell Biol.  2008.  182.  P. 421-428. CrossRef
  26.  
  27. Kelley M.J. Mutation of MYH9, encoding non-muscle myosin heavy chain A, in May-Hegglin anomaly . Nat. Genet.  2000.  26.  P. 106-108. CrossRef
  28.  
  29. Komazin-Meredith G., Mirchev R., Golan D.E. et al. Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion . Proc. Natl. Acad. Sci. USA.  2008.  105.  P. 10721-10726. CrossRef
  30.  
  31. Kullmann F., Judex M., Ballhorn W. et al. Kinesin-like protein CENP-E is upregulated in rheumatoid synovial fibroblasts . Arthritis Res.  1999.  1.  P. 71-80.
  32.  
  33. Marszalek J.R., Liu X., Roberts E.A. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors . Cell. 2000.  102.  P. 175-187. CrossRef.1016/S0092-8674(00)00023-4
  34.  
  35. Melchionda S. et al. MYO6, the human homologue of the gene responsible for deafness in Snell’s waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss . Amer. J. Hum. Genet.  2002.  69. P. 635-640. CrossRef
  36.  
  37. Minoura I., Muto E. Dielectric measurement of individual microtubules using the electroorientation method . Biophys J.  2006.  90.  P. 3739-3748. CrossRef
  38.  
  39. Minoura I., Muto E. One-dimensional diffusion of charged nanoparticles along microtubules . Biophysics J.  2006.  46.  P. S218. CrossRef.S218_4
  40.  
  41. Miyamoto Y., Muto E., Mashimo T. et al. Direct inhibition of microtubule-based kinesin motility by local anesthetics . Biophys. J.  2000.  78.  P. 940-949. CrossRef.1016/S0006-3495(00)76651-3
  42.  
  43. Nonaka S., Tanaka Y., Okada Y. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein . Cell.  1998.  95.  P.829-837. CrossRef.1016/S0092-8674(00)81705-5
  44.  
  45. Ohira M., Kageyama H., Mihara M. et al. Identification and characterization of a 500-kb homozygously deleted region at 1p36.2-p36.3 in a neuroblastoma cell line . Oncogene.  2000. 19.  P. 430-432. CrossRef
  46.  
  47. Okada Y., Higuchi H., Hirokawa N. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin . Nature.  2003.  424.  P. 574-577. CrossRef
  48.  
  49. Pazour G.J., Rosenbaum J. Intraflagellar transport and cilia-dependent diseases . Trends Cell Biol.  2002. 12.  P. 551-555. CrossRef.1016/S0962-8924(02)02410-8
  50.  
  51. Provance D.W. Melanophilin, the product of the leaden locus, is required for targeting of myosin-Va to melanosomes . Traffic.  2002, ¹3.  Ð. 124-132. CrossRef
  52.  
  53. Qin H., Rosenbaum J.L., Barr M.M. An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons . Curr. Biol.  2001.  11. P. 457-461. CrossRef.1016/S0960-9822(01)00122-1
  54.  
  55. Seidman J.G., Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms . Cell.  2001.  104.  P. 557-567. CrossRef.1016/S0092-8674(01)00242-2
  56.  
  57. Seyrek E., Dubin PL., Tribet C. et al. Ionic strength dependence of protein-polyelectrolyte interactions . Biomacromolecules.  2003.  4.  P. 273-282. CrossRef
  58.  
  59. Tafvizi A., Huang F., Leith J.S. et al. Tumor suppressor p53 slides on DNA with low friction and high stability . Biophys J.  2008.  95.  P. L01-L013. CrossRef
  60.  
  61. Tai C.Y. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function . J. Cell Biol. 2002.  156.  P. 959-968. CrossRef
  62.  
  63. Vale R.D., Soll D.R., Gibbons I.R. One-dimensional diffusion of microtubules bound to flagellar dynein . Cell.  1989.  Dec 1. 59(5).  P. 915-925. CrossRef.1016/0092-8674(89)90614-4
  64.  
  65. Walsh T. et al. From flies’ eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30 . Proc. Natl. Acad. Sci. USA.  2002. 99.  P. 7518-7523. CrossRef
  66.  
  67. Wang Y.M., Austin R.H., Cox E.C. Single molecule measurements of repressor protein 1D diffusion on DNA . Physipl Rev Lett.  2006.  97.  P. 048302. CrossRef
  68.  
  69. Wang A. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3 . Science.  1998.  280.  P. 1447-1451. CrossRef
  70.  
  71. Watts N.R., Sackett D.L., Ward R.D. et al. HIV-1 rev depolymerizes microtubules to form stable bilayered rings . J. Cell Biol.  2000.  150.  P. 349-360. CrossRef
  72.  
  73. Zhao C., Takita J., Tanaka Y. et al. Charcot-MarieTooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta . Cell.  2001.  105. P. 587-597. CrossRef.1016/S0092-8674(01)00363-4

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.