Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2019; 65(4): 73-81


O.O. Bilonoha, B.O. Manko, V.V. Manko

    Ivan Franko National University of Lviv, Ukraine


Upon activation of secretion pancreatic acinar cells require sufficient amount of energy. It is not known which metabolic pathways supply mitochondrial adaptive capacity of acinar cells in active functional state. Basal and FCCP-stimulated respiration of rat pancreatic acini was measured with Clark electrode. Mitochondrial adaptive capacity was assessed by maximal uncoupled respiration rate and optimal FCCP concentration. Upon acetylcholine or cholecystokinin stimulation, basal respiration rate increased in presence of glucose (by 16 or 25 %, respectively) or combinations of glucose with pyruvate (by 36 і 37 %,) or glutamine (21 or 29 %), but not with monomethyl-succinate or dimethyl-α-ketoglutarate. Maximal uncoupled respiration rate increased only upon the oxidation of pyruvate with glucose; acetylcholine increased it from 2.32 r.u. to 3.62 r.u. and cholecystokinin - to 3.19 r.u. The optimal FCCP concentration increased only after stimulation with cholecystokinin - from 1.17 to 1.33 μM. Thus, primary agonists increase adaptive capacity of pancreatic acinar cells’ mitochondria via intensification of pyruvate oxidation, but not other tested substrates.

Keywords: pancreatic acinus; maximal uncoupled respiration rat; optimal FCCP concentration; acetylcholine; cholecystokinin; oxidative substrates


  1. Raraty M, Ward J, Erdemli G, Vaillant C, Neoptolemos JP, Sutton R, Petersen O.H. Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. Proc Natl Acad Sci USA. 2000;97(24):13126-31. CrossRef PubMed PubMedCentral
  3. Voronina SG, Barrow SL, Gerasimenko OV, Petersen OH, Tepikin AV. Effects of secretagogues and bile acids on mitochondrial membrane potential of pancreatic acinar cells: comparison of different modes of evaluating DeltaPsim. J Biol Chem. 2004;279(26):27327-38. CrossRef PubMed
  5. Voronina S, Sukhomlin T, Johnson PR, Erdemli G, Petersen OH, Tepikin A. Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells. J Physiol. 2002;539(Pt 1):41-52. CrossRef PubMed PubMedCentral
  7. Voronina SG, Barrow SL, Simpson AW. Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells. Gastroenterology. 2010;138:1976-87. CrossRef PubMed PubMedCentral
  9. Man'ko BO, Man'ko VV. Influence of Ca2+ on kinetic parameters of pancreatic acinar mitochondria in situ respiration. Ukr Biokhim Zh. 2013 Jul-Aug;85(4):48-60. [Ukrainian]. CrossRef  
  10. Man'ko BO, Man'ko VV. Influence of adenosine diphosphate on respiration of rat pancreatic acinar cells mitochondria in situ. Fiziol Zh. 2013 59(5):61-70. [Ukrainian]. CrossRef PubMed
  12. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435:297-312. CrossRef PubMed PubMedCentral
  14. Manko BO, Bilonoha OO, Manko VV. Adaptive respiratory response of rat pancreatic acinar cells to mitochondrial membrane depolarization. Ukr Biochem J. 2019; 91(3):34-45. CrossRef  
  15. Manko BO, Klevets M.Yu, Manko V.V. An implication of novel methodology to study pancreatic acinar mitochondria under in situ conditions. Cell Biochem Funct. 2012;31(2):115-21. CrossRef PubMed
  17. Manko BO, Manko V.V. Mechanisms of respiration intensification of rat pancreatic acini upon carbacholinduced Ca(2+) release. Acta Physiol (Oxf). 2013;208(4):387-99. CrossRef PubMed
  19.  Li Ch, Chen X, Williams JA. Regulation of CCK-induced amylase release by PKC- in rat pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol. 2004;287:764-771. CrossRef PubMed
  21. Gerritje J.W. van der Windt, Bart Everts, Chih-Hao Chang, Jonathan D. Curtis, Tori C. Freitas,1 Eyal Amiel,1 Edward J. Pearce and Erika L. Pearce. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012; 36(1):68-78. CrossRef PubMed PubMedCentral
  23. Louie DS and Owyang C. (1986) Muscarinic receptor subtypes on rat pancreatic acini: secretion and binding studies. Am J Physiol. 1986; 251:275-9. CrossRef PubMed
  25. Wank SA, Harkins R, Jensen RT, Shapira H, de Weerth A, and Slattery T. Purification, molecular cloning, and functional expression of the cholecystokinin receptor from rat pancreas. Proc Natl Acad Sci USA. 1992 Apr 1;89:3125-9. CrossRef PubMed PubMedCentral
  27. Matozaki, T. & J. A. Williams. Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. J. Biol. Chem. 1989 ; 264:14729-34.
  29. Denton RM and McCormack JG. The calcium sensitive dehydrogenases of vertebrate mitochondria. 1986; 7(5-6): 377-86. CrossRef  
  30. McCormack JG, Halestrap AP, Denton RM. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 1990; 70: 391-425. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2023.