Nonel approaches to correction of mitochondrial dysfunction and oxidative disorders in Parkinson’s disease
O. Gonchar1, I. Mankovska1, K. Rozova1, L. Bratus1, I. Karaban2
- O.O.Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
- D.F. Chebotarev Institute of Gerontology National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz65.03.061
Abstract
Mitochondrial dysfunction has been widely implicated in the neuronal degeneration in Parkinson’s disease
(PD). The uses of mitochondria-targeted protective compounds that prevent or minimize a wide range of
mitochondrial defects constitute potential therapeutic strategies in the prevention and treatment of neuronal
degeneration in PD. This review discusses the latest findings in this field obtained in PD patients and
animal and cellular models of PD with focusing on the effects of pharmacological agents on mitochondrial
biogenesis, fission, fusion, mitophagy machinery, and transcription of endogenous cytoprotective antioxidant
enzymes. We have also presented the data concerning the technologies for research and screening novel
bioactive molecules to target mitochondrial dysfunction in Parkinson’s disease.
Keywords:
Parkinson’s disease, mitochondrial dysfunction, mitochondria-targeted protective compounds.
References
- Frank C, Pari G, Rossiter JP. Approach to diagnosis of Parkinson disease. Can Fam Physician. 2006;52: 862-8.
- Hudson G. The ageing brain, mitochondria and neurodegeneration. In: Reeve AK, Simcox EM, Duchen MR, Turnbull DM, eds. Mitochondrial Dysfunction in Neurodegenerative Disorders. 2nd ed. Springer Int Publishing 2016;59-80.
CrossRef
- Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol. 2005;58:495-505.
CrossRef
PubMed
- Chaturvedi RK and Beal M. Mitochondrial approaches for neuroprotection. Ann NY Acad Sci. 2008;1147:395-412.
CrossRef
PubMed PubMedCentral
- Langston JW, Ballard P, Tetrud JW and Irwin I. Chronic Parkinsonism in humans due to a product of meperidineanalog synthesis. Science. 1983;219:979-80. -
CrossRef
PubMed
- Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol. 2003; 53 (suppl 3):S26-36 doi:10.1002/ana.10483
CrossRef
PubMed
- Lin MT and Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787-95.
CrossRef
PubMed
- Pan-Montojo F, Schwarz M, Winkler C, Arnhold M, O'Sullivan GA, Pal A, Said J, Marsico G, Verbavatz JM, Rodrigo-Angulo M, Gille G, Funk RH, Reichmann H. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep. 2012;2:898.
CrossRef
PubMed PubMedCentral
- Majd S, Power JH, Grantham HJ. Neuronal response in Alzheimer's and Parkinson's disease: the effect of toxic proteins on intracellular pathways. BMC Neurosci. 2015;16:69.
CrossRef
PubMed PubMedCentral
- Cannon JR, Greenamyre JT. Neurotoxic in vivo models of Parkinson's disease recent advances. Prog Brain Res. 2010;184:17-33.
CrossRef
- Picard M, McManus MJ. Mitochondrial signaling and neurodegeneration. In: Reeve AK, Simcox EM, Duchen MR, Turnbull DM, eds. Mitochondrial Dysfunction in Neurodegenerative Disorders. 2nd ed. Springer Int Publishing 2016;107-37.
CrossRef
- Smith RAJ, Hartley RC, Cocheme HM, Murphy MP. Mitochondrial pharmacology. Trends Pharm Sci. 2012;33(6):341-52.
CrossRef
PubMed
- Hudson G, Nalls M, Evans JR, Breen DP, Winder-Rhodes S, Morrison KE, Morris HR, Williams-Gray CH, Barker RA, Singleton AB, Hardy J, Wood NE, Burn DJ, Chinnery PF. Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson's disease. Neurology. 2013;80:2042-48.
CrossRef
PubMed PubMedCentral
- Leonard JV, Schapira AH. Mitochondrial respiratory chain disorders II: neurodegenerative disorders and nuclear gene defects. Lancet 2000;355:389-94.
CrossRef
- Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K, Ariga H. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 2004;5:213-18.
CrossRef
PubMed PubMedCentral
- Moore DJ, Zhang L, Troncoso J, Lee MK, Hattori N, Mizuno Y, Dawson TM, Dawson VL. Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet. 2005;14:71-84.
CrossRef
PubMed
- Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol. 2008;7:97-109.
CrossRef
- Bose A and Beal MF. Mitochondrial dysfunction in Parkinson's disease. J Neurochem. 2016; 139(Suppl.1):216-31.
CrossRef
PubMed
- Ryan BJ, Hoek S, Fon EA, Wade-Martins R. Mitochondrial dysfunction and mitophagy in Parkinson's: From familial to sporadic disease. Trends Biochem Sci. 2015; 40:200-10.
CrossRef
PubMed
- Truban D, Hou X, Caulfield TR, Fiesel FC, Springer W. PINK 1, Parkin, and Mitochondrial Quality Control: What can we learn about Parkinson's disease pathobiology? J Parkinson's disease. 2017;7:13-29.
CrossRef
PubMed PubMedCentral
- Schapira HV, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. The Lancet. 2014;384:545-55.
CrossRef
- Stewart VC, Heales SJ. Nitric oxide-induced mitochondrial dysfunction: Implications for neurodegeneration. Free Radic Biol Med. 2003; 34:287-303.
CrossRef
- Henchcliffe C and Beal MF. Mitochondrial biology and oxidative stress in Parkinson's disease pathogenesis. Nature Clin Pract Neurol. 2008;4:600-09.
CrossRef
PubMed
- Narendra DP, Youle RJ. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal. 2011;14:1929-38.
CrossRef
PubMed PubMedCentral
- Perier C, Bové J, Dehay B, Jackson-Lewis V, Rabinovitch PS, Przedborski S, and Vila M. Apoptosis-inducing factor deficiency sensitizes dopaminergic neurons to parkinsonian neurotoxins. Ann Neurol. 2010;68:184-92.
CrossRef
PubMed
- Franco-Iborra S, Vila M, Perier C. The Parkinson's disease mitochondrial hypothesis: where are we at? Neuroscientist 2016;22:266-77.
CrossRef
PubMed
- Milane L, Trivedi M, Singh A, Talekar M, Amiji M. Mitochondrial biology, targets, and drug delivery. J Control Release. 2015;207:40-58.
CrossRef
PubMed
- Teicher BA, Holden SA, Cathcart KN. Efficacy of Pt(Rh-123)2 as a radiosensitizer with fractionated X rays. Int J Radiat Oncol Biol Phys. 1987;13:1217-24.
CrossRef
- Szeto HH, Schiller PW. Novel therapies targeting inner mitochondrial membrane - from discovery to clinical development. Pharm Res. 2011; 28:2669-79.
CrossRef
PubMed
- Yousif LF, Stewart KM, Kelley SO. Targeting mitochondria with organelle-specific compounds: strategies and applications. Chem Biochem. 2009;10:1939-50.
CrossRef
PubMed
- Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O'Sullivan JD, Fung V, Smith RA, Murphy MP, Taylor KM. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov Disord. 2010; 25:1670-74.
CrossRef
PubMed
- Smith RA and Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann NY Acad Sci. 2010;1201:96-103.
CrossRef
PubMed
- Ghosh A, Solesio ME, Prime TA, Logan A, Murphy MP. Neuroprotection by a mitochondria-targeted drug in a Parkinson's disease model. Free Radic Biol Med. 2010;49:1674-84.
CrossRef
PubMed PubMedCentral
- Twig G, Shirihai O S. The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal. 2011;14:1939-51.
CrossRef
PubMed PubMedCentral
- Patki G, Lau Y-S. Melatonin protects against neurobehavioral and mitochondrial deficits in a chronic mouse model of Parkinson's disease. Pharmacol Biochem Behavior. 2011;99(4):704-11.
CrossRef
PubMed PubMedCentral
- Dabbeni-Sala F, di Santo S, Franceschini D, Skaper SD, and Giusti P. Melatonin protects against 6-OHDAinduced neurotoxicity in rats: a role for mitochondrial complex I activity. FASEB J. 2001;15(1):164-70.
CrossRef
PubMed
- Strathearn KE, Yousef GG, Grace MH, Roy SL, Tambe MA, Ferruzzi MG, Wu QL, Simon JE, Lila MA, Rochet JC. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson's disease. Brain Res. 2014; 1555:60-77.
CrossRef
PubMed PubMedCentral
- Geed M, Garabadu D, Ahmad A, and Krishnamurthy S. Silibinin pretreatment attenuates biochemical and behavioral changes induced by intrastriatal MPP+ injection in rats. Pharmacol Biochem Behavior. 2014;117:92-103.
CrossRef
PubMed
- Guo S, Bezard E, and Zhao B. Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med. 2005;39(5):682-95.
CrossRef
PubMed
- Hwang CK, Chun HS. Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine induced apoptosis in dopaminergic neuron. Biosci Biotechnol Biochem. 2012;76(3):536-43.
CrossRef
PubMed
- Kim HG, Ju MS, Kim DH, Hong J, Cho SH, Cho KH, Park W, Lee EH, Kim SY, Oh MS Protective effects of Chunghyuldan against ROS-mediated neuronal cell death in models of Parkinson's disease. Basic Clin Pharmacol Toxicol. 2010; 107 (6):958-64.
CrossRef
PubMed
- Tamilselvam K, Braidy N, Manivasagam T, Essa MM, Prasad NR, Karthikeyan S, Thenmozhi AJ, Selvaraju S, Guillemin GJ. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone induced oxidative stress and apoptosis in a cellular model for Parkinson's disease. Oxid Med Cell Longev. 2013;2013:102741.
CrossRef
PubMed PubMedCentral
- Karuppagounder SS, Madathil SK, Pandey M, Haobam R, Rajamma U, Mohanakumar KP. Quercetin up-regulates mitochondrial complex I activity to protect against programmed cell death in rotenone model of Parkinson's disease in rats. Neuroscience. 2013;236:136-48.
CrossRef
PubMed
- Bournival J, Plouffe M, Renaud J, Provencher C, Martinoli M-G. Quercetin and sesamin protect dopaminergic cells from MPP+-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system. Oxid Med Cell Longev. 2012; 11.
CrossRef
PubMed PubMedCentral
- Wang Y-H, Yu H-T, Pu X-P, Du G-H. Baicalein prevents 6-hydroxydopamine-induced mitochondrial dysfunction in SH-SY5Y cells via inhibition of mitochondrial oxidation and up-regulation of DJ-1 protein expression. Molecules. 2013 ;18(12):14726-38.
CrossRef
PubMed PubMedCentral
- Li XX, He GR, Mu X, Xu B, Tian S, Yu X, Meng FR, Xuan ZH, Du GH. Protective effects of baicalein against rotenone-induced neurotoxicity in PC12 cells and isolated rat brain mitochondria. Eur J Pharmacol. 2012;674(2- 3):227-33.
CrossRef
PubMed
- Jagatha B, Mythri RB, Vali S, Bharath M. M. S. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson's disease explained via in silico studies. Free Radic Biol Med. 2008;44(5):907-17.
CrossRef
PubMed
- Liu Z, Yu Y, Li X, Ross CA, Smith WW. Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacol Res. 2011;63(5):439-44.
CrossRef
PubMed
- Subramaniam SR and Ellis EM. Neuroprotective effects of umbelliferone and esculetin in a mouse model of Parkinson's disease. J Neurosci Res. 2013;91(3):453-61.
CrossRef
PubMed
- Liu WB, Zhou J, Qu Y, Li X, Lu CT, Xie KL, Sun XL, Fei Z. Neuroprotective effect of osthole on MPP+-induced cytotoxicity in PC12 cells via inhibition of mitochondrial dysfunction and ROS production. Neurochem Int. 2010;57(3):206-15.
CrossRef
PubMed
- Yi F, He X, Wang D. Lycopene protects against MPP+-induced cytotoxicity by maintaining mitochondrial function in SH-SY5Y cells. Neurochem Res. 2013;38(8):1747-57.
CrossRef
PubMed
- Kaur H, Chauhan S, Sandhir R. Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson's disease. Neurochemic Res. 2011 ;36(8):1435-43.
CrossRef
PubMed
- Seidl SE and Potashkin JA. The promise of neuroprotective agents in Parkinson's disease.Front Neurol; 2011; 2: 68.
CrossRef
PubMed PubMedCentral
- Helliwell SB.. Development of treatments and therapies to target mitochondrial dysfunction. In: Reeve AK, Simcox EM, Duchen MR, Turnbull DM, eds. Mitochondrial Dysfunction in Neurodegenerative Disorders. Springer 2nd ed. Int Publishing 2016;349-371.
CrossRef
- Moosmann B and Behl C. Antioxidants as treatment for neurodegenerative disorders. Expert Opin Invest Drugs. 2002;11:1407-35.
CrossRef
PubMed
- van Muiswinkel FL and Kuiperij HB. The Nrf2-ARE signalling pathway: promising drug target to combat oxidative stress in neurodegenerative disorders. Curr Drug Targets CNS Neurol Disord. 2005;4:267-81.
CrossRef
PubMed
- Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2003; 43:233-60.
CrossRef
PubMed
- Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med. 2008;74:1526-39.
CrossRef
PubMed
- Wu KC, McDonald PR, Liu J, Klaassen CD. Screening of natural compounds as activators of the Keap 1-Nrf2 pathway. Planta Med. 2013;80:97-104.
CrossRef
PubMed PubMedCentral
- Calkins MJ, Johnson DA, Townsend JA, Vargas MR, Dowell JA, Williamson TP, Kraft AD, Lee JM, Li J, Johnson JA. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal. 2009;11:497-508.
CrossRef
PubMed PubMedCentral
- Lee C, Park GH, Lee SR, Jang JH. Attenuation of betaamyloid-induced oxidative cell death by sulforaphane via activation of NF-E2-related factor 2. Oxid Med Cell Longev. 2013; 2013 :313510.
CrossRef
PubMed PubMedCentral
- Eggler AL, Gay KA, Mesecar AD. Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective enzymes by Nrf2. Mol Nutr Food Res. 2008;52 (Suppl. 1):S84-S94.
CrossRef
PubMed
- Yang L, Zhao K, Calingasan NY, Luo G, Szeto HH, Beal MF. Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Antioxid Redox Signal. 2009;11:2095-2104.
CrossRef
PubMed PubMedCentral
- Miclea A, Leussink VI, Hartung HP, Gold R, and Hoepner R. Safety and efficacy of dimethyl fumarate in multiple sclerosis: a multi-center observational study. J Neurol. 2016.
CrossRef
PubMed
- Ahuja M, Ammal Kaidery N, Yang L, Calingasan N, Smirnova N, Gaisin A, Gaisina IN, Gazaryan I, Hushpulian DM, Kaddour-Djebbar I, Bollag WB, Morgan JC, Ratan RR, Starkov AA, Beal MF, Thomas B. Distinct Nrf2 signaling mechanisms of fumaric acid esters and their role in neuroprotection against 1-methyl-4- phenyl-1,2,3,6- tetrahydropyridine-induced experimental Parkinson's-like disease. J Neurosci. 2016;36:6332-51.
CrossRef
PubMed PubMedCentral
- Wenz T. Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. Mitochondrion. 2013;13(2):134-42.
CrossRef
PubMed
- Chen H and Chan DC. Mitochondrial dynamics in mammals. Curr Top Dev Biol. 2004; 59:119-44.
CrossRef
- Mishra P, Carelli V, Manfredi G, Chan DC. Proteolytic cleavage of Opa 1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 2014;19(4):630-41.
CrossRef
PubMed PubMedCentral
- Mourier A. Mitochondrial dynamics and neurodegeneration. In: Reeve AK, Simcox EM, Duchen MR, Turnbull DM, eds. Mitochondrial Dysfunction in Neurodegenerative Disorders. Springer 2nd ed. Int Publishing 2016;175-191.
CrossRef
- Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Publ Gr. 2011;12(1):9-14.
CrossRef
PubMed PubMedCentral
- Wang D, Wang J, Bonamy GM, Meeusen S, Brusch RG, Turk C, Yang P, Schultz PG. A small molecule promotes mitochondrial fusion in mammalian. Angew Chem. 2012;51:9302-5.
CrossRef
PubMed
- Yue W, Chen Z, Liu H, Yan C, Chen M, Feng D, Yan C, Wu H, Du L, Wang Y, Liu J, Huang X, Xia L, Liu L, Wang X, Jin H, Wang J, Song Z, Hao X, Chen Q. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res. 2014; 24(4) :482-96.
CrossRef
PubMed PubMedCentral
- Rappold PM, Cui M, Grima JC, Fan RZ, de Mesy-Bentley KL, Chen L, Zhuang X, Bowers WJ, Tieu K. Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo. Nat Commun. 2014; 5:5244.
CrossRef
PubMed PubMedCentral
- Taymans JM, Greggio E. LRRK2 Kinase Inhibition as a Therapeutic Strategy for Parkinson's Disease. Where Do We Stand ? Curr Neuropharmacol. 2016;14(3):214-25.
CrossRef
PubMed PubMedCentral
- Ventura-Clapier R, Garnier A, Veksler V.Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res. 2008;79:208-17.
CrossRef
PubMed
- Mudò G, Mäkelä J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Mälkiä A, Bonomo A, Kairisalo M, Aguirre JA, Korhonen L, Belluardo N, Lindholm D. Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell Mol Life Sci. 2012; 69:1153-65.
CrossRef
PubMed
- Borra MT, Smith BC, Denu JM. Mechanism of human SIRT 1 activation by resveratrol. J Biol Chem. 2005;280(17):17187-95.
CrossRef
PubMed
- Hasegawa K, Yasuda T, Shiraishi C, Fujiwara K, Przedborski S, Mochizuki H, Yoshikawa K. Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults. Nat Commun. 2016;7:10943.
CrossRef
PubMed PubMedCentral
- Otten EG, Manni D, Korolchuk VI. Mitochondrial degradation, autophagy and neurodegenerative disease. In: Reeve AK, Simcox EM, Duchen MR, Turnbull DM, eds. Mitochondrial Dysfunction in Neurodegenerative Disorders. 2nd ed. Springer Int Publishing 2016;255-278.
CrossRef
- Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev. 2011;91(4):1161-218.
CrossRef
PubMed
- Trempe JF and Fon EA. Structure and function of Parkin, PINK 1, and DJ-1, the three musketeers of neuroprotection. Front Neurol. 2013;4:38.
CrossRef
PubMed PubMedCentral
- Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem. 2004;279(18):18614-22.
CrossRef
PubMed
- Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, Duchen MR, Abramov AY. PINK 1 - associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol cell. 2009;33(5):627-38.
CrossRef
PubMed PubMedCentral
- Canet-Avilés RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, Baptista MJ, Ringe D, Petsko GA, Cookson MR The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA. 2004;101(24):9103-8.
CrossRef
PubMed PubMedCentral
- Thomas KJ, McCoy MK, Blackinton J, Beilina A, van der Brug M, Sandebring A, Miller D, Maric D, CedazoMinguez A, Cookson MR. DJ-1 acts in parallel to the PINK 1/parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet. 2011;20(1):40-50.
- Bian M, Liu J, Hong X, Yu M, Huang Y, Sheng Z, Fei J, Huang F. Overexpression of parkin ameliorates dopaminergic neurodegeneration induced by 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine in mice. PLoS Biol. 2012;7(6):e39953.
CrossRef
PubMed PubMedCentral
- Santos RX, Correia SC, Carvalho C, Cardoso S, Santos MS, Moreira PI. Mitophagy in neurodegeneration:an opportunity for therapy? Curr Drug Targets. 2011; 12(6):790-9.
CrossRef
PubMed
- Cheng Y, Ren X, Hait WN, Yang JM. Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol Rev. 2013;65(4):1162-97.
CrossRef
PubMed PubMedCentral
- Hasson SA, Fogel AI, Wang C, MacArthur R, Guha R, Heman-Ackah S, Martin S, Youle RJ, Inglese J. Chemogenomic profiling of endogenous PARK2 expression using a genome-edited coincidence reporter. ACS Chem Biol. 2015;10:1188-97.
CrossRef
PubMed
- Chambers JW, Pachori A, Howard S, Ganno M, Hansen D Jr, Kamenecka T, Song X, Duckett D, Chen W, Ling YY, Cherry L, Cameron MD, Lin L, Ruiz CH, Lograsso P. Small molecule c-jun-N-terminal kinase inhibitors protect dopaminergic neurons in a model of Parkinson's disease. ACS Chem Neurosci. 2011;2(4):198-206.
CrossRef
PubMed PubMedCentral
- Hertz NT, Berthet A, Sos ML, Thorn KS, Burlingame AL, Nakamura K, and Shokat KM. A neo-substrate that amplifies catalytic activity of Parkinson's-disease-related kinase PINK1. Cell. 2013;154:737-47.
CrossRef
PubMed PubMedCentral
- Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, Foreman O, Kirkpatrick DS & Sheng M. The mitochondrial deubiquitinase USP30 opposes parkinmediated mitophagy. Nature. 2014;510:370-75.
CrossRef
PubMed
- Mankovska IM., Rosova KV, Gonchar OO, Nosar VI, Bratus LV, Drevitska TI, Karasevich NV, Karaban IM. Effect of Capicor on the Parkinson's disease pathogenic links. Fiziol Zh. 2018;64(1):16-24 [Ukraine].
CrossRef
- Gardian G, Yang L, Cleren C, Calingasan NY, Klivenyi P, Beal MF. Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity. Neuromolecular Med. 2004;5:235-241.
CrossRef
- Inden M, Kitamura Y, Takeuchi H, Yanagida T, Takata K, Kobayashi Y, Taniguchi T, Yoshimoto K, Kaneko M, Okuma Y, Taira T, Ariga H, and Shimohama S. Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J Neurochem. 2007;101:1491-1504.
CrossRef
PubMed
- Wilkins HM, Carl SM, Swerdlow RH. Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol. 2014;2(1):619-31.
CrossRef
PubMed PubMedCentral
- Cooper O, Seo H, Andrabi S, Guardia-laguarta C. Pharmacological rescue of mitochondrial deficis in iPSC-derived neural cells from patients with familial Parkinson's disease. Sci Transl Med. 2012;4(141):141-90.
CrossRef
PubMed PubMedCentral
- Sanders LH, Laganière J, Cooper O, Mak SK, Vu BJ, Huang YA, Paschon DE, Vangipuram M, Sundararajan R, Urnov FD, Langston JW, Gregory PD, Zhang HS, Greenamyre JT, Isacson O, Schüle B. LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction. Neurobiol Dis. 2014;62:381-6.
CrossRef
PubMed PubMedCentral
- Tang FL, Liu W, Hu JX, Erion JR, Ye J, Mei L, Xiong WC. VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep. 2015;12:1631-43.
CrossRef
PubMed PubMedCentral
- Dong J, Li S, Mo JL, Cai HB, Le WD. Nurr1-based therapies for Parkinson's disease. CNS Neurosci Ther. 2016;22:351-59.
CrossRef
PubMed PubMedCentral
- Lotharius J, Dugan LL, O'Malley KL. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci Res. 1999;19(4):1284-93.
CrossRef
- Jin H, Chen WQ, Tang XW, Chiang LY, Yang CY, Schloss JV, Wu JY. Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents. J Neurosci Res. 2000;62:600-7.
CrossRef
- Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun. 2002;294 (1) :116-19.
CrossRef
- Cai X, Jia H, Liu Z, Hou B, Luo C, Feng Z, Li W, Liu J. Polyhydroxylated fullerene derivative C60(OH)24 prevents mitochondrial dysfunction and oxidative damage in an MPP+-induced cellular model of Parkinson's disease. J Neurosci Res. 2008;86(16): 3622-34.
CrossRef
PubMed
- Prylutskyy YI, Vereshchaka IV, Maznychenko AV, Bulgakova NV, Gonchar OO, Kyzyma OA, Ritter U, Scharff P, Tomiak T, Nozdrenko DM, Mishchenko IV, Kostyukov AI. C60 fullerene as promising therapeutic agent for correcting and preventing skeletal muscle fatigue. J Nanobiotechnol. 2017; 15:8.
CrossRef
PubMed PubMedCentral
- Gonchar O., Maznychenko A., Bulgakova N., Vereschaka I., Tomiak T., Ritter U., Prylutskyy Y., Mankovska I., Kostyukov A. C60 Fullerene prevents restraint stressinduced oxidative disorders in rat tissues: possible involvement of the Nrf2/ARE-antioxidant pathway. Oxid Med Cell Long. 2018; 2018 (Article ID 2518676): 17
CrossRef
PubMed PubMedCentral
|