Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2019; 65(3): 47-60


N.V. Dobrelia, A.S. Khromov

    SI “Institute of Pharmacology and Toxicology National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine


Increase in blood glucose is accompanied by NO-dependent dilatation in the vessels of both systemic and pulmonary circulation and an increase the blood concentration of endothelin. The increase in blood endothelin levels in patients with diabetes mellitus (DM) correlates with hyperglycemia and HbA1c level as well as with the oxidative stress. In the systemic circulation, there is a significant increase in the expression of endothelin mRNA receptors of all types, but in the lungs, the overexpression of type A receptor predominates and only a slight increase in expression of type B receptor occurs. The content of arachidonic acid and its metabolites with resulting responses of the vessels are significantly altered in the circulatory in diabetes mellitus. The formation and excretion of constrictor compounds is enhanced, and the number of vasorelaxants is reduced. Data on changes in the concentration and effect on the reaction of vessels of hydroperoxyecososetraenoic acids and lipoxin A4 are absent under the conditions of the DM. The diabetes influence on the ion channels in the pulmonary arteries needs to be studied. It has been demonstrated that diabetes does not affect KV protein expression in these vessels but suppresses the corresponding current. It has been shown that TRPM channel expression in the lung vessels is decreased in diabetes, but their activation due to ROS is significantly increased. Hyperglycemia, insulin resistance, endothelial dysfunction in diabetes mellitus may be responsible for changes in the pulmonary circulation and may provoke pulmonary vascular disturbances.

Keywords: diabetes mellitus; hyperglycemia; pulmonary artery; endothelial dysfunction; ion canal.


  1. Järvisalo MJ, Raitakari M, Toikka JO, Putto-Laurila A, Rontu R, Laine S, Lehtimäki T, Rönnemaa T, Viikari J, Raitakari OT. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation. 2004;109(14):1750-5. CrossRef PubMed
  3. Hadi H, Suwaidi J. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag. 2007;3(6):853-76.
  5. Lopez-Lopez JG, Moral-Sanz J, Frazziano G, Gomez-Villalobos MJ, Flores-Hernandez J, Monjaraz E, Cogolludo A, Perez-Vizcaino F. Diabetes induces pulmonary artery endothelial dysfunction by NADPH oxidase induction. Am J Physiol Lung Cell Mol Physiol. 2008;295:L727-32. CrossRef PubMed
  7. Gurney A, Howarth F. Effects of streptozotocin-induced diabetes on the pharmacology of rat conduit and resistance intrapulmonary arteries. Cardiovasc Diabetol. 2009;8:4. CrossRef PubMed PubMedCentral
  9. Sena CM, Pereira AM, Seiça R. Endothelial dysfunction - A major mediator of diabetic vascular disease. Biochim Biophys Acta. 2013;1832(12):2216-31. CrossRef PubMed
  11. Tesfamariam B, Brown ML, Deykin D, Cohen RA. Elevated glucose promotes generation of endotheliumderived vasoconstrictor prostanoids in rabbit aorta. J Clin Invest. 1990;85(3):929-32. CrossRef PubMed PubMedCentral
  13. Wiener C, Sylvester J. Effects of glucose on hypoxic vasoconstriction in isolated ferret lungs. J Appl Physiol. 1991;70(1):439-46. CrossRef PubMed
  15. Nugent A, Nugent A, McGurk C. Impaired vasoconstriction to endothelin 1 in patients with NIDDM. Diabetes. 1996;45(1):105-17. CrossRef PubMed
  17. Leo CH, Hart JL, Woodman OL. LeoImpairment of both nitric oxide-mediated and EDHF-type relaxation in small mesenteric arteries from rats with streptozotocin-induced diabetes. Br J Pharmacol. 2011;162(2):365-77. CrossRef PubMed PubMedCentral
  19. Mokhtar SS, Rasool AHG. Role of Endothelium-Dependent Hyperpolarisation and Prostacyclin in Diabetes. Malays J Med Sci. 2015;22(2):8-17.
  21. Takamura T, Kato I, Kimura N, Nakazawa T, Yonekura H, Takasawa S, Okamoto H. Transgenic mice overexpressing type 2 nitric-oxide synthase in pancreatic beta cells develop insulin-dependent diabetes without insulitis. J Biol Chem. 1998;273(5):2493-6. CrossRef PubMed
  23. Kato Y, Miura Y, Yamamoto N, Ozaki N, Oiso Y. Suppressive effects of a selective inducible nitric oxide synthase (iNOS) inhibitor on pancreatic beta-cell dysfunction. Diabetologia. 2003;46:1228-33. CrossRef PubMed
  25. Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy M-A, Simonson DC, Creager MA. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation. 1998;97:1695-701. CrossRef PubMed
  27. Beckman JA, Paneni F, Cosentino F, Creager MA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436-43. CrossRef PubMedCentral
  29. Headley CA, DiSilvestro D, Bryant KE, Hemann C, Chen CA, Das A, Ziouzenkova O, Durand G, Villamena FA. Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells. Biochem Pharmacol. 2016;104:108-17. CrossRef PubMed PubMedCentral
  31. Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27(3):567-74. CrossRef  
  32. Hampl V, Herget J. Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol Rev. 2000;80(4):1337-72. CrossRef PubMed
  34. Zanetti M, Barazzoni R, Stebel M, Roder E, Biolo G, Baralle FE, Cattin L, Guarnieri G. Dysregulation of the endothelial nitric oxide synthase-soluble guanylate cyclase pathway is normalized by insulin in the aorta of diabetic rat. Atherosclerosis. 2005;181(1):69-73. CrossRef PubMed
  36. Ott IM, Alter ML, von Websky K, Kretschmer A, Tsuprykov O, Sharkovska Y, Krause-Relle K, Raila J, Henze A, Stasch JP, Hocher B. Effects of Stimulation of Soluble Guanylate Cyclase on Diabetic Nephropathy in Diabetic eNOS Knockout Mice on Top of Angiotensin II Receptor Blockade. PLoS One. 2012;7(8):e42623. CrossRef PubMed PubMedCentral
  38. Boustany-Kari C, Harrison P, Chen H. A soluble guanylate cyclase activator inhibits the progression of diabetic nephropathy in the ZSF1 rat. J Pharmacol Exp Ther. 2016;356(3):712-19. CrossRef PubMed
  40. Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch. 2010;459(6):793-806. CrossRef PubMed
  42. Li Y, Xu Q, Xu W, Guon XH, Zhang S, Chen YD. Mechanisms of protection against diabetes-induced impairment of endothelium-dependent vasorelaxation by Tanshinone IIA. Biochim Biophys Acta. 2015;1850(4):813-23. CrossRef PubMed
  44. Tayeh MA, Marletta MA. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem. 1989;264:19654-8.
  46. Pannirselvam M, Verma S, Anderson TJ, Triggle CR. Cellular basis of endothelial dysfunction in small mesenteric arteries from spontaneously diabetic (db/db-/-) mice: role of decreased tetrahydrobiopterin bioavailability. Br J Pharmacol. 2002;136:255-63. CrossRef PubMed PubMedCentral
  48. Rubio-Guerra AF, Vargas-Robles H, Ramos-Brizuela LM, Escalante-Acosta BA. Is tetrahydrobiopterin a therapeutic option in diabetic hypertensive patients? Integr Blood Press Control. 2010;3:125-32. CrossRef PubMed PubMedCentral
  50. Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini S, Zuppi C, Ghirlanda G. Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud. 2010;7(1):15-25. CrossRef PubMed PubMedCentral
  52. Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S, Barrett EJ. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004;53(6):1418-23. CrossRef PubMed
  54. Ishii M, Shimizu S, Nagai T, Shiota K, Kiuchi Y, Yamamoto T. Stimulation of tetrahydrobiopterin synthesis induced by insulin: possible involvement of phosphatidylinositol 3-kinase. Int J Biochem Cell Biol. 2001;33(1):65-73. CrossRef  
  55. Bailey J, Shaw A, Fischer R, Ryan BJ, Kessler BM, McCullagh J, Wade-Martins R, Channon KM, Crabtree MJ. A novel role for endothelial tetrahydrobiopterin in mitochondrial redox balance. Free Radic Biol Med. 2017;104:214-25. CrossRef PubMed PubMedCentral
  57. Zuccollo A, Shi C, Mastroianni R, Maitland-Toolan KA, Weisbrod RM, Zang M, Xu S, Jiang B, Oliver-Krasinski JM, Cayatte AJ, Corda S, Lavielle G, Verbeuren TJ, Cohen RA. The thromboxane A2 receptor antagonist S18886 prevents enhanced atherogenesis caused by diabetes mellitus. Circulation. 2005;112(19):3001-8. CrossRef PubMed
  59. Hardie DG, Ashford MLJ. AMPK: regulating energy balance at the cellular and whole body levels. Physiol (Bethesda). 2014;29(2):99-107. CrossRef PubMed PubMedCentral
  61. Katakami N, Kaneto H, Matsuoka TA, Takahara M, Osonoi T, Saitou M, Kawai K, Ishibashi F, Kashiwagi A, Kawamori R, Shimomura I, Yamasaki Y. Accumulation of oxidative stress-related gene polymorphisms and the risk of coronary heart disease events in patients with type 2 diabetes - An 8-year prospective study. Atherosclerosis. 2014;235(2):408-14. CrossRef PubMed
  63. Joshi MS. Effects of human endothelial gene polymorphisms on cellular responses to hyperglycaemia: role of NOS3 (Glu298Asp) and ACE (I/D) polymorphisms. Diab Vasc Dis Res. 2011;8(4):276-83. CrossRef PubMed
  65. Sridulyakul P, Chakraphan D, Bhattarakosol P, Patumraj S. Endothelial nitric oxide synthase expression in systemic and pulmonary circulation of streptozotocin induced diabetic rats: comparison using image analysis. Clin Hemorheol Microcirc. 2003;29(3-4):423-8.
  67. Çukurova Z, Hergünsel O, Eren G, Gedikbaşi A, Uhri M, Demir G, Tekdöş Y. The Effect of Pomegranate Juice on Diabetes-Related Oxidative Stress in Rat Lung. Turkiye Klinikleri J Med Sci. 2012;32(2):444-452. CrossRef  
  68. Liu X, Yin F, Wei K, Zheng Y, Liu L, Qiu F, Xie Y, Xu S, Mu E, Liang Y, Zhang Z, Ma X. Roles of pulmonary vascular endothelial cell injury and dimethylargininedimethylaminohydrolase/nitric oxide synthase/nitric oxidesystem changes in the occurrence of diabetic sepsis in rats. Biomed Res (India). 2017;28(11):4837-42.
  70. Vatter H, Zimmermann M, Tesanovic V, Raabe A, Schilling L, Seifert V. Cerebrovascular characterization of clazosentan, the first nonpeptide endothelin receptor antagonist clinically effective for the treatment of cerebral vasospasm. Part I: inhibitory effect on endothelin(A) receptor-mediated contraction. J Neurosurg. 2005;102:1101-07. CrossRef PubMed
  72. Duerrschmidt N, Wippich N, Goettsch W, Broemme HJ, Morawietz H. Endothelin-1 induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun. 2000;269:713-17. CrossRef PubMed
  74. Dong F, Zhang X, Wold LE, Ren Q, Zhang Z, Ren J. Endothelin-1 enhances oxidative stress, cell proliferation and reduces apoptosis in human umbilical vein endothelial cells: role of ETB receptor, NADPH oxidase and caveolin-1. Br J Pharmacol. 2005;145(3):323-33. CrossRef PubMed PubMedCentral
  76. Galle J, Lehmann-Bodem C, Hubner U, Heinloth A, Wanner C. CyA and OxLDL cause endothelial dysfunction in isolated arteries through endothelin-mediated stimulation of O(2)(−) formation. Nephrol Dial Transplant. 2000;15:339-46. CrossRef PubMed
  78. Loomis ED, Sullivan JC, Osmond DA, Pollock DM, Pollock JS. Endothelin mediates superoxide production and vasoconstriction through activation of NADPH oxidase and uncoupled nitric-oxide synthase in the rat aorta. J Pharmacol Exp Ther. 2005;315(3):1058-64. CrossRef PubMed
  80. Takahashi K, Ghatei MA, Lam HC, O'Halloran DJ, Bloom SR. Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia. 1990;33(5):306-10. CrossRef PubMed
  82. Makino A, Kamata K. Elevated plasma endothelin-1 level in streptozotocininduced diabetic rats and responsiveness of the mesenteric arterial bed to endothelin-1. Br J Pharmacol. 1998;123:1065-72. CrossRef PubMed PubMedCentral
  84. Kanie N, Matsumoto T, Kobayashi T, Kamata K. Relationship between peroxisome proliferator-activated receptors (PPAR alpha and PPAR gamma) and endothelium-dependent relaxation in streptozotocin-induced diabetic rats. Br J Pharmacol. 2003;140:23-32. CrossRef PubMed PubMedCentral
  86. Yamauchi T, Ohnaka K, Takayanagi R, Umeda F, Nawata H. Enhanced secretion of endothelin-1 by elevated glucose levels from cultured bovine aortic endothelial cells. FEBS Letters. 1990;267(1):16-8. CrossRef  
  87. Ferri C, Laurenti O, Bellini C, Faldetta MR, Properzi G, Santucci A, De Mattia G. Circulating endothelin-1 levels in lean non-insulin-dependent diabetic patients. Influence of ACE inhibition. Am J Hypertens. 1995;8(1):40-7. CrossRef  
  88. Ferri C, Bellini C, Desideri G, Baldoncini R, Properzi G, Santucci A, De Mattia G. Circulating endothelin-1 levels in obese patients with the metabolic syndrome. Exp Clin Endocrinol Diabetes. 1997;105(2):38-40. CrossRef PubMed
  90. Ferri C, Pittoni V, Piccoli A, Laurenti O, Cassone MR, Bellini C, Properzi G, Valesini G, De Mattia G, Santucci A. Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo. J Clin Endocrinol Metab. 1995;80(3):829-35. CrossRef PubMed
  92. Tsunoda K, Abe K, Sato T, Yokosawa S, Yoshinaga K. Decreased conversion of big endothelin-1 to endothelin-1 in patients with diabetes mellitus. Clin Exp Pharmacol Physiol. 1991;18(10):731-2. CrossRef PubMed
  94. Erbas T, Erbas B, Kabakci G, Aksöyek S, Koray Z, Gedik O. Plasma big-endothelin levels, cardiac autonomic neuropathy, and cardiac functions in patients with insulin-dependent diabetes mellitus. Clin Cardiol. 2000;23(4):259-63. CrossRef PubMed
  96. Matsumoto T, Yoshiyama S, Kobayashi T, Kamata K. Mechanisms underlying enhanced contractile response to endothelin-1 in diabetic rat basilar artery. Peptides. 2004;25:1985-94. CrossRef PubMed
  98. Shemyakin A, Böhm F, Wagner H, Efendic S, Båvenholm P, Pernow J. Enhanced endothelium-dependent vasodilatation by dual endothelin receptor blockade in individuals with insulin resistance. J Cardiovasc Pharmacol. 2006;47(3):385-90.
  100. Cayir A, Ugan RA, Albayrak A, Kose D, Akpinar E, Cayir Y, Atmaca HT, Bayraktutan Z, Kara M. The lung endothelin system: a potent therapeutic target with bosentan for the amelioration of lung alterations in a rat model of diabetes mellitus. J Endocrinol Invest. 2015;38(9):987-98. CrossRef PubMed
  102. McAuley DF, Nugent AG, McGurk C, Maguire S, Hayes JR, Johnston GD. Vasoconstriction to endogenous endothelin-1 is impaired in patients with Type II diabetes mellitus. Clin Sci (Lond). 2000;99(3):175-9. CrossRef  
  103. Cardillo C, Campia U, Bryant MB, Panza JA. Increased Activity of Endogenous Endothelin in Patients With Type II Diabetes Mellitus. Circulation. 2002;106:1783-7. CrossRef PubMed
  105. Haak T, Jungmann E, Felber A. Increased plasma levels of endothelin in diabetic patients with hypertension an alternative viewpoint. Am J Hypertens. 1992;5(3):161-6. CrossRef PubMed
  107. Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ 2nd. Isoprostane Generation and Function. Chemical Reviews. 2011;111(10):5973-96. CrossRef PubMed PubMedCentral
  109. Mezzetti A, Cipollone F, Cuccurullo F. Oxidative stress and cardiovascular complications in diabetes: isoprostanes as new markers on an old paradigm. Cardiovasc Res. 2000;47(3):475-88. CrossRef  
  110. Lei S, Liu Y, Liu H, Yu H, Wang H, Xia Z. Effects of NAcetylcysteine on Nicotinamide Dinucleotide Phosphate Oxidase Activation and Antioxidant Status in Heart, Lung, Liver and Kidney in Streptozotocin-Induced Diabetic Rats. Yonsei Med J. 2012;53(2):294-303. CrossRef PubMed PubMedCentral
  112. Kaviarasan S, Muniandy S, Qvist R, Ismail IS. F2- Isoprostanes as Novel Biomarkers for Type 2 Diabetes: a Review. J Clin Biochem Nutr. 2009;45(1):1-8. CrossRef PubMed PubMedCentral
  114. Miura H, Gutterman DD. Human coronary arteriolar dilation to arachidonic acid depends on cytochrome P-450 monooxygenase and Ca2-activated K channels. Circ Res. 1998;83:501-7. CrossRef PubMed
  116. Dellsperger KC, Spector AA, Myers PR, Weintraub NL. 12-Lipoxygenase in porcine coronary microcirculation: implications for coronary vasoregulation. Am J Physiol Heart Circ Physiol. 2001;280:H693-704. CrossRef PubMed
  118. Miller AW, Katakam PV, Lee HC, Tulbert CD, Busija DW, Weintraub NL. Arachidonic acid-induced vasodilation of rat small mesenteric arteries is lipoxygenasedependent. J Pharmacol Exp Ther. 2003;304(1):139-44. CrossRef PubMed
  120. Zhou W, Wang XL, Kaduce TL, Spector AA, Lee HC. Impaired arachidonic acid-mediated dilation of small mesenteric arteries in Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol. 2005;288(5):H2210-18. CrossRef PubMed
  122. Hishinuma T, Yu GSP, Takabatake M, Nakagawa Y, Ito K, Nishikawa M, Ishibashi M, Suzuki K, Matsumoto M, Toyoda T, Mizugaki M. Analysis of the thromboxane/ prostacyclin balance in human urine by gas chromatography/selected ion monitoring: abnormalities in diabetics. Prostaglandins Leukot and Essent Fatty Acids. 1996;54(6):445-9. CrossRef  
  123. Valentovic MA, Lubawy WC. Impact of Insulin or Tolbutamide Treatment on 14C-Arachidonic Acid Conversion to Prostacyclin and/or Thromboxane in Lungs, Aortas, and Platelets of Streptozotocin-induced Diabetic Rats. Diabetes. 1983;32(9):846-51. CrossRef PubMed
  125. Shen B, Ye CL, Ye KH, Liu JJ. Mechanism underlying enhanced endothelium-dependent vasodilatation in thoracic aorta of early stage streptozotocin-induced diabetic mice. Acta Pharmacol Sinica. 2003;24:422-8.
  127. Gerrard JM, Stuart MJ, Rao GH, Steffes MW, Mauer SM, Brown DM, White JG. Alteration in the balance of prostaglandin and thromboxane synthesis in diabetes. J Lab Clin Med. 1980;95(6):950-6.
  129. Roth DM, Reibel DK, Lefer AM. Vascular Responsiveness and Eicosanoid Production in Diabetic Rats. Diabetologia. 1983;24:372-6. CrossRef PubMed
  131. Stitham J, Hwa J. Prostacyclin, atherothrombosis and diabetes mellitus: physiologic and clinical considerations. Curr Mol Med. 2016;16(4):328-42. CrossRef PubMed
  133. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-70. CrossRef PubMed PubMedCentral
  135. Mokhtar SS, Vanhoutte PM, Leung SW, Yusof MI, Wan Sulaiman WA, Saad AZM, Suppian R, Rasool AHG. Reduced expression of prostacyclin synthase and nitric oxide synthase in subcutaneous arteries of type 2 diabetic patients. Tohoku J Exp Med. 2013;231(3):217-22. CrossRef PubMed
  137. Feletou M, Huang Y, Vanhoutte PM. Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol. 2011;164(3):894-912. CrossRef PubMed PubMedCentral
  139. Zaccardi F, Rizzi A, Petrucci G. In vivo platelet activation and aspirin responsiveness in type 1 diabetes mellitus. Diabetes. 2016;65(2):503-9. CrossRef PubMed
  141. Zuccollo A, Shi C, Mastroianni R, Maitland-Toolan KA, Weisbrod RM, Zang M, Xu S, Jiang B, Oliver-Krasinski JM, Cayatte AJ, Corda S, Lavielle G, Verbeuren TJ, Cohen RA. The thromboxane A2 receptor antagonist S18886 prevents enhanced atherogenesis caused by diabetes mellitus. Circulation. 2005;112(19):3001-8. CrossRef PubMed
  143. Xie X, Sun W, Wang J, Li X, Liu X, Liu N. Activation of thromboxane A2 receptors mediates endothelial dysfunction in diabetic mice. Clin Exp Hypertens. 2017;39(4):312-8. CrossRef PubMed
  145. Roth DM, Reibel DK, Lefer AM. Vascular Responsiveness and Eicosanoid Production in Diabetic Rats. Diabetologia. 1983;24:372-6. CrossRef PubMed
  147. Nascimento-Silva V, Arruda MA, Barja-Fidalgo C, Fierro IM. Aspirin-triggered lipoxin A4 blocks reactive oxygen species generation in endothelial cells: a novel antioxidative mechanism. Thromb Haemost. 2007;97(1):88-98. CrossRef PubMed
  149. Serhan CN, Chiang N, Van Dyke TE. Resolving Inflammation: Dual Anti-Inflammatory and Pro-Resolution Lipid Mediators. Nat Rev Immunol. 2008;8:349-61. CrossRef PubMed PubMedCentral
  151. Hu F, Liu XX, Wang X, Alashkar M, Zhang S, Xu JT, Zhong XL, He MW, Feng AP, Chen HX. Lipoxin A4 Inhibits Proliferation and Inflammatory Cytokine/Chemokine Production of Human Epidermal Keratinocytes Associated with the ERK1/2 and NF-kappaB Pathways. J Dermatol Sci. 2015;78(3):181-8. CrossRef PubMed
  153. Yu D, Xu Z, Yin X, Zheng F, Lin X, Pan Q, Li H. Inverse Relationship between Serum Lipoxin A4 Level and the Risk of Metabolic Syndrome in a Middle-Aged Chinese Population. PLoS ONE. 2015;10(11):e0142848. CrossRef PubMed PubMedCentral
  155. Gundala NKV, Naidu VGM, Das UN. Arachidonic acid and lipoxin A4 attenuate alloxan-induced cytotoxicity to RIN5F cells in vitro and type 1 diabetes mellitus in vivo. Biofactors. 2017;43(2):251-71. CrossRef PubMed
  157. Das UN. Arachidonic acid and lipoxin A4 as possible endogenous anti-diabetic molecules. Prostaglandins Leukot Essent Fatty Acids. 2013;88(3):201-10. CrossRef PubMed
  159. Das UN. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus? Front Endocrinol (Lausanne). 2017;8:182. CrossRef PubMed PubMedCentral
  161. Maderna P, Godson C. Lipoxins: resolutionary road. Br J Pharmacol. 2009;158(4):947-59. CrossRef PubMed PubMedCentral
  163. Spiecker M, Liao JK. Vascular protective effects of cytochrome p450 epoxygenase-derived eicosanoids. Arch Biochem Biophys. 2005;433(2):413-20. CrossRef PubMed
  165. Edin ML, Hamedani BG, Gruzdev A, Graves JP, Lih FB, Arbes SJ 3rd, Singh R, Orjuela LAC, Bradbury JA, DeGraff LM, Hoopes SL, Arand M, Zeldin DC. Epoxide hydrolase 1 (EPHX1) hydrolyzes epoxyeicosanoids and impairs cardiac recovery after ischemia. J Biol Chem. 2018;293(9):3281-92. CrossRef PubMed PubMedCentral
  167. Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res. 1996;78:415-23. CrossRef PubMed
  169. Harder DR, Lange AR, Gebremedhin D, Birks EK, Roman RJ. Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue. J Vasc Res. 1997;34(3):237-43. CrossRef PubMed
  171. He J, Wang C, Zhu Y, Ai D. Soluble epoxide hydrolase: A potential target for metabolic diseases. J Diabetes.2016;8(3):305-13. CrossRef PubMed
  173. Oguro A, Fujita N, Imaoka S. Regulation of soluble epoxide hydrolase (sEH) in mice with diabetes: high glucose suppresses sEH expression. Drug Metab Pharmacokinet. 2009;24(5):438-45. CrossRef PubMed
  175. Stephenson AH, Sprague RS, Losapio JL, Lonigro AJ. Differential effects of 5,6-EET on segmental pulmonary vasoactivity in the rabbit. Am J Physiol Heart Circ Physiol. 2003;284(6):H2153-61. CrossRef PubMed
  177. Zhu D, Bousamra M 2nd, Zeldin DC, Falck JR, Townsley M, Harder DR, Roman RJ, Jacobs ER. Epoxyeicosatrienoic acids constrict isolated pressurized rabbit pulmonary arteries. Am J Physiol Lung Cell Mol Physiol. 2000;278(2):L335-43. CrossRef PubMed
  179. Alvarez D, Gjerde E, Townsley M. Role of EETs in regulation of endothelial permeability in rat lung. Am J Physiol Lung Cell Mol Physiol. 2004;286(2):445-51. CrossRef PubMed
  181. Keserü B, Barbosa-Sicard E, Schermuly RT, Tanaka H, Hammock BD, Weissmann N, Fisslthaler B, Fleming I. Hypoxia-induced pulmonary hypertension: comparison of soluble epoxide hydrolase deletion vs. inhibition. Cardiovasc Res. 2010;85(1):232-40. CrossRef PubMed PubMedCentral
  183. Jiang JX, Zhang SJ, Liu YN, Lin XX, Sun YH, Shen HJ, Yan XF, Xie QM. EETs alleviate ox-LDL-induced inflammation by inhibiting LOX-1 receptor expression in rat pulmonary arterial endothelial cells. Eur J Pharmacol. 2014;727:43-51. CrossRef PubMed
  185. Feng W, Xu X, Zhao G, Li G, Liu T, Zhao J, Dong R, Wang DW, Tu L. EETs and CYP2J2 inhibit TNF-α- induced apoptosis in pulmonary artery endothelial cells and TGF-β1-induced migration in pulmonary artery smooth muscle cells. Int J Mol Med. 2013;32 (3):685-93. CrossRef PubMed
  187. Toth P, Rozsa B, Springo Z, Doczi T, Koller A. Isolated human and rat cerebral arteries constrict to increases in flow: role of 20-HETE and TP receptors. J Cereb Blood Flow Metab. 2011;31(10):2096-105. CrossRef PubMed PubMedCentral
  189. Toth P, Csiszar A, Tucsek Z, Sosnowska D, Gautam T, Koller A, Schwartzman ML, Sonntag WE, Ungvari Z. Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am J Physiol Heart Circ Physiol. 2013;305(12):H1698-708. CrossRef PubMed PubMedCentral
  191. Theken KN, Deng Y, Schuck RN, Oni-Orisan A, Miller TM, Kannon MA, Poloyac SM, Lee CR. Enalapril reverses high-fat diet-induced alterations in cytochrome P450-mediated eicosanoid metabolism. Am J Physiol Endocrinol Metab. 2012;302(5):E500-9. CrossRef PubMed PubMedCentral
  193. Yousif MH, Benter IF, Dunn KM, Dahly-Vernon AJ, Akhtar S, Roman RJ. Role of 20-hydroxyeicosatetraenoic acid in altering vascular reactivity in diabetes. Auton Autacoid Pharmacol. 2009;29(1-2):1-12. CrossRef PubMed PubMedCentral
  195. Joseph G, Soler A, Hutcheson R, Hunter I, Bradford C, Hutcheson B, Gotlinger KH, Jiang H, Falck JR, Proctor S, Schwartzman ML, Rocic P. Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2017;312(3):H528-40. CrossRef PubMed PubMedCentral
  197. Iegorova OV, Maksimyuk OP, Fisyunov OI, Krish- tal' OO. Potentsialkerovani kal'tsiievi kanali: klasifikatsiya ta farmakologichni harakteristiki (chastina I). Fiziol. zhurn. 2016;62(4):84-94. CrossRef PubMed
  199. Makino A, Firth AL, Yuan JX-J. Endothelial and Smooth Muscle Cell Ion Channels in Pulmonary Vasoconstriction and Vascular Remodeling. Compr Physiol. 2011;1(3):1555-602. CrossRef PubMed PubMedCentral
  201. Franco-Obregon A, Lopez-Barneo J. Differential oxygen sensitivity of calcium channels in rabbit smoothmuscle cells of conduit and resistance pulmonary arteries. J Physiol. 1996;491:511-8. CrossRef PubMed PubMedCentral
  203. Kato S, Ishida H, Tsuura Y, Tsuji K, Nishimura M, Horie M, Taminato T, Ikehara S, Odaka H, Ikeda I, Okada Y, Seino Y. Alterations in Basal and Glucose-stimulated Voltage-dependent Ca2+ Channel Activities in Pancreatic β Cells of Non-Insulin-dependent Diabetes Mellitus GK rats. J Clin Invest. 1996;97(11):2417-25. CrossRef PubMed PubMedCentral
  205. Carmines PK, Ohishi K, Ikenaga H. Functional impairment of renal afferent arteriolar voltage-gated calcium channels in rats with diabetes mellitus. J Clin Invest. 1996;98(11):2564-71. CrossRef PubMed PubMedCentral
  207. Pedersen SF, Owsianik G, Nilius B. TRP channels: An overview. Cell Calcium. 2005;38:233-52. CrossRef PubMed
  209. Fernandez RA, Sundivakkam P, Smith KA, Zeifman AS, Drennan AR, Yuan JX-J. Pathogenic Role of StoreOperated and Receptor-Operated Ca2+ Channels in Pulmonary Arterial Hypertension. J Signal Transduct. 2012;2012:951497. CrossRef PubMed PubMedCentral
  211. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4:552-65. CrossRef PubMed
  213. Tamareille S, Mignen O, Capiod T, Rücker-Martin C, Feuvray D. High glucose-induced apoptosis through store-operated calcium entry and calcineurin in human umbilical vein endothelial cells. Cell Calcium. 2006;39(1):47-55. CrossRef PubMed
  215. Li J, Wang P, Yu S, Zheng Z, Xu X. Calcium entry mediates hyperglycemia-induced apoptosis through Ca2+/ calmodulin-dependent kinase ll in retinal capillary endothelial cells. Mol Vis. 2012;18:2371-2379.
  217. Bishara NB, Ding H. Glucose enhances expression of TRPC1 and calcium entry in endothelial cells. Am J Physiol Heart Circ Physiol. 2010;298:H171-8. CrossRef PubMed
  219. Daskoulidou N, Zeng B, Berglund LM, Jiang H, Chen GL, Kotova O, Bhandari S, Ayoola J, Griffin S, Atkin SL, Gomez MF, Xu SZ. High glucose enhances storeoperated calcium entry by upregulating ORAI/STIM via calcineurin-NFAT signaling. J Mol Med (Berl). 2015;93(5):511-21. CrossRef PubMed
  221. Estrada IA, Donthamsetty R, Debski P, Zhou MH, Zhang SL, Yuan JX, Han W, Makino A. STIM1 restores coronary endothelial function in type I diabetic mice. Circ Res. 2012;111(9):1166-75. CrossRef PubMed PubMedCentral
  223. Mita M, Ito K, Taira K, Nakagawa J, Walsh MP, Shoji M. Attenuation of store-operated Ca2+ entry and enhanced expression of TRPC channels in caudal artery smooth muscle from Type 2 diabetic Goto-Kakizaki rats. Clin Exp Pharmacol Physiol. 2010;37(7):670-8. CrossRef PubMed
  225. Makino A, Firth AL, Yuan JX-J. Endothelial and Smooth Muscle Cell Ion Channels in Pulmonary Vasoconstriction and Vascular Remodeling. Compr Physiol. 2011;1:1555-602. CrossRef PubMed PubMedCentral
  227. Firth AL, Remillard CV, Platoshyn O, Fantozzi I, Ko EA, Yuan JX. Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels. Pulm Circ. 2011;1(1):48-71. CrossRef PubMed PubMedCentral
  229. Li H, Chai Q, Gutterman DD, Liu Y. Elevated glucose impairs cAMP-mediated dilation by reducing Kv channel activity in rat small coronary smooth muscle cells. Am J Physiol Heart Circ Physiol. 2003;285(3):H1213-9. CrossRef PubMed
  231. Absia M, Osoa H, Khattabb M. The effect of streptozotocin-induced diabetes on the EDHF-type relaxation and cardiac function in rats. J Adv Res. 2013;4(4):375-83. CrossRef PubMed PubMedCentral
  233. Rainbow R, Hardy M, Standen N. Glucose reduces endothelin inhibition of voltage-gated potassium channels in rat arterial smooth muscle cells. J Physiol. 2006;575(3):833-44. CrossRef PubMed PubMedCentral
  235. Su W, Li W, Chen H, Liu H, Huang H, Li H. Advanced Glycation End Products Impair Voltage-Gated K+ Channels-Mediated Coronary Vasodilation in Diabetic Rats. PLoS ONE. 2015;10(11):e0142865. CrossRef PubMed PubMedCentral
  237. Lopez-Lopez JG, Moral-Sanz J, Frazziano G, Gomez-Villalobos MJ, Moreno L, Menendez C, Flores-Hernandez J, Lorente JA, Cogolludo A, Perez-Vizcaino F. Type 1 diabetes-induced hyper-responsiveness to 5-hydroxytryptamine in rat pulmonary arteries via oxidative stress and induction of cyclooxygenase-2. J Pharmacol Exp Ther. 2011;338(1):400-7. CrossRef PubMed
  239. Moral-Sanz J, Menendez C, Moreno L, Moreno E, Cogolludo A, Perez-Vizcaino F. Pulmonary arterial dysfunction in insulin resistant obese Zucker rats. Resp Res. 2011;12(1):51. CrossRef PubMed PubMedCentral
  241. Nieves-Cintrón M, Syed AU, Buonarati OR, Rigor RR, Nystoriak MA, Ghosh D, Sasse KC, Ward SM, Santana LF, Hell JW, Navedo MF. Impaired BKCa channel function in native vascular smooth muscle from diabetic patients. FASEB J. 2016; 30(1):1281.8. CrossRef PubMed PubMedCentral
  243. McGahon MK, Dash DP, Arora A, Wall N, Dawicki J, Simpson DA, Scholfield CN, McGeown JG, Curtis TM. Diabetes Downregulates Large-Conductance Ca2+-Activated Potassium 1 Channel Subunit in Retinal Arteriolar Smooth Muscle. Circ Res. 2007;100(5):703-11. CrossRef PubMed PubMedCentral
  245. Burnham M, Johnson I, Weston A. Reduced Ca2+-dependent activation of large-conductance Ca2+-activated K+ channels from arteries of Type 2 diabetic Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol. 2006; 290(4):1520-7. CrossRef PubMed
  247. Fujita T, Palmieri GM. Calcium paradox disease: calcium deficiency prompting secondary hyperparathyroidism and cellular calcium overload. J Bone Miner Metab. 2000; 18(3):109-25. CrossRef PubMed
  249. Ivanova IV, Mel'nik MI, Soloviov AI. Rozvitok eksperimental'nogo tsukrovogo diabetu prignichuie zagal'nu kaliievu providnist' u gladen'kom'yazovih klitinah aorti, ale zbil'shuie ii v klitinah legenevoi arterii shchuriv. Farmakologiya ta likars'ka toksikologiya. - 2018;2(58):25-31.
  251. Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, Johnson PR, Rorsman P. Voltage-gated ion channels in human pancreatic betacells: electrophysiological characterization and role in insulin secretion. Diabetes. 2008;57(6):1618-28. CrossRef PubMed
  253. Lauria G, Ziegler D, Malik R, Merkies IS, Waxman SG, Faber CG. The role of sodium channels in painful diabetic and idiopathic neuropathy. Curr Diab Rep. 2014;14(10):538. CrossRef PubMed
  255. Kharatmal SB, Singh JN, Sharma SS. Voltage-Gated Sodium Channels as Therapeutic Targets for Treatment of Painful Diabetic Neuropathy. Mini Rev Med Chem. 2015;15(14):1134-47. CrossRef PubMed
  257. Yang L, Li Q, Liu X, Liu S. Roles of Voltage-Gated Tetrodotoxin-Sensitive Sodium Channels NaV1.3 and NaV1.7 in Diabetes and Painful Diabetic Neuropathy. Int J Mol Sci. 2016;17(9):1479. CrossRef PubMed PubMedCentral
  259. Platoshyn O, Remillard CV, Fantozzi I, Sison T, Yuan JX. Identification of Functional Voltage-gated Na+ Channels in Cultured Human Pulmonary Artery Smooth Muscle Cells. Pflügers Archiv. 2005;451(2):380-7. CrossRef PubMed PubMedCentral
  261. Geraci MW, Moore M, Gesell T, Yeager ME, Alger L, Golpon H, Gao B, Loyd JE, Tuder RM, Voelkel NF. Gene expression patterns in the lungs of patients with primary pulmonary hypertension: a gene microarray analysis. Circ Res. 2001;88(6):555-62. CrossRef PubMed
  263. Lu S, Xiang L, Clemmer JS, Mittwede PN, Hester RL. Oxidative stress increases pulmonary vascular permeability in diabetic rats through activation of transient receptor potential melastatin 2 (TRPM2) channels. Microcirc. 2014;21(8):754-60. CrossRef PubMed PubMedCentral
  265. Nilius B, Prenen J, Szücs G, Wei L, Tanzi F, Voets T, Droogmans G. Calcium-activated chloride channels in bovine pulmonary artery endothelial cells. J Physiol. 1997;498(Pt 2):381-96. CrossRef PubMed PubMedCentral
  267. Yamazaki J, Duan D, Janiak R, Kuenzli K, Horowitz B, Hume JR. Functional and molecular expression of volume-regulated chloride channels in canine vascular smooth muscle cells. J Physiol. 1998;507(Pt 3):729-36. CrossRef PubMed PubMedCentral
  269. Ayon R, Sones W, Forrest AS, Wiwchar M, Valencik ML, Sanguinetti AR, Perrino BA, Greenwood IA, Leblanc N. Complex Phosphatase Regulation of Ca2+-activated Cl− Currents in Pulmonary Arterial Smooth Muscle Cells. J Biol Chem. 2009;284(47):32507-21. CrossRef PubMed PubMedCentral
  271. Matchkov V, Briggs DM, Aalkjaer C, Nilsson H. A cyclic GMP-dependent calcium-activated chloride channel in smooth muscle tissues: properties, distribution and identity. J Physiol. 2005;568P,PC1.
  273. Takizawa N, Mizuno Y, Ito Y, Kikuchi K. Tissue distribution of isoforms of type-1 protein phosphatase PP1 in mouse tissues and its diabetic alterations. J Biochem. 1994;116(2):411-5. CrossRef PubMed
  275. Racioppi L, Means A. Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. J Biol Chem. 2012;287(38):31658-65. CrossRef PubMed PubMedCentral
  277. Wang Y, Kotlikoff M. Inactivation of calcium-activated chloride channels in smooth muscle by calcium/calmodulin-dependent proteinkinase. Proc Natl AcadSci U S A. 1997;94(26):14918-23. CrossRef PubMed PubMedCentral
  279. Luo M, Guan X, Luczak ED, Lang D, Kutschke W, Gao Z, Yang J, Glynn P, Sossalla S, Swaminathan PD, Weiss RM, Yang B, Rokita AG, Maier LS, Efimov IR, Hund TJ, Anderson ME. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Invest. 2013;123(3):1262-74. CrossRef PubMed PubMedCentral
  281. Yousif M, Benter IF, Akhtar S. Inhibition of calcium/ calmodulin-dependent protein kinase II normalizes diabetes-induced abnormal vascular reactivity in the rat perfused mesenteric vascular bed. Auton Autacoid Pharmacol. 2003;23(1):27-33. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.