Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2019; 65(2): 97-107


N.V. Dobrelia, A.S. Khromov

    Institute of Pharmacology and Toxicology of National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine


Increased attention has been paid recently to the effect of diabetes on the pulmonary blood flow with indicating a dramatic growth in lung diseases and the possible association of diabetes with pulmonary arterial hypertension. Chronic hyperglycemia triggers a cascade of pathological reactions based on the oxidative stress stipulated by increase in number of the free electron donors with strengthening the electron stream in the mitochondrial electron transport chain. The numerous studies confirm an increase in concentration of the active oxygen forms in the pulmonary arteries as well in diabetes mellitus, so this mechanism may be regarded as an universal for both systemic and pulmonary circulation. The effects of hyperglycemia, namely oxidative stress, activation of the polyol and hexosamine pathways of glucose metabolism, activation of protein kinase with enhanced formation of the glycation final products increase the constricting capacity of the blood vessels in the greater circulation, but any effects of these factors on the blood vessels in the lesser circulation have been studied insufficiently. An expression of insulin receptors and glucose transporters has been revealed in the lung tissue, but virtually no data exist on their localization and density in the pulmonary artery wall, or any changes at the receptor or postreceptor levels in insulin resistance and diabetes mellitus.

Keywords: diabetes mellitus; hyperglycemia; pulmonary artery; insulin resistance.


  1. Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34:2436-46. CrossRef PubMed PubMedCentral
  3. Ehrlich SF, Quesenberry CP, Van Den Eeden SK, Shan J, Ferrara A. Patients diagnosed with diabetes are at increased risk for asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and pneumonia but not lung cancer. Diabetes Care. 2010;33(1):55-60. CrossRef PubMed PubMedCentral
  5. Jagadapillai R, Rane MJ, Lin X, Roberts AM, Hoyle GW, Cai L, Gozal E. Diabetic Microvascular Disease and Pulmonary Fibrosis: The Contribution of Platelets and Systemic Inflammation. Int J Mol Sci. 2017;7(11):1853. CrossRef PubMed PubMedCentral
  7. Hsiao YT, Cheng WC, Liao WC, Lin CL, Shen TC, Chen WC, Chen CH, Kao CH. Type 1 Diabetes and Increased Risk of Subsequent Asthma: A Nationwide Population-Based Cohort Study. Medicine (Baltimore). 2015;94(36):e1466. CrossRef PubMed PubMedCentral
  9. Kent BD, Grote L, Ryan S, Pépin JL, Bonsignore MR, Tkacova R, Saaresranta T, Verbraecken J, Lévy P, Hedner J, McNicholas WT. Diabetes mellitus prevalence and control in sleep-disordered breathing: the European Sleep Apnea Cohort (ESADA) study. Chest. 2014;146(4):982-90. CrossRef PubMed
  11. Cheepsattayakorn A., Cheepsattayakorn R. Pulmonary Infectious Diseases in Association with Diabetes Mellitus. J Lung Pulm Respir Res. 2017;4(3):1-4. CrossRef  
  12. Grinnan D, Farr G, Fox A, Sweeney L. The role of hyperglycemia and insulin resistance in the development and progression of pulmonary arterial hypertension. J Diabetes Res. 2016;2016:7. CrossRef PubMed PubMedCentral
  14. Pan M, Han Y, Si R, Guo R, Desai A, Makino A. Hypoxiainduced pulmonary hypertension in type 2 diabetic mice. Pulm Circ. 2017;7(1):175-85. CrossRef PubMed PubMedCentral
  16. Trammell AW, Talati M, Blackwell TR, Fortune NL, Niswender KD, Fessel JP, Newman JH, West JD, Hemnes AR. Pulmonary vascular effect of insulin in a rodent model of pulmonary arterial hypertension. Pulm Circ. 2017;7(3):624-34. CrossRef PubMed PubMedCentral
  18. Pugh ME, Robbins IM, Rice TW, West J, Newman JH, Hemnes AR. Unrecognized glucose intolerance is common in pulmonary arterial hypertension. J Heart Lung Transplant. 2011;30(8):904-11. CrossRef PubMed PubMedCentral
  20. Abernethy AD, Stackhouse K, Hart S, Devendra G, Bashore TM, Dweik R, Krasuski RA. Impact of diabetes in patients with pulmonary hypertension. Pulm Circ. 2015;5(1):117-23. CrossRef PubMed PubMedCentral
  22. Pitocco D, Tesauro M, Alessandro R, Ghirlanda G, Cardillo C. Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci. 2013;14(11):21525-50. CrossRef PubMed PubMedCentral
  24. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977-86. CrossRef PubMed
  26. Pistrosch F, Natali A, Hanefeld M. Is Hyperglycemia a Cardiovascular Risk Factor? Diabetes Care. - 2011;34(2):S128-31. CrossRef PubMed PubMedCentral
  28. Tinsley LJ, Kupelian V, D'Eon SA, Pober D, Sun JK, King GL, Keenan HA. Association of Glycemic Control With Reduced Risk for Large-Vessel Disease After More Than 50 Years of Type 1 Diabetes. J Clin Endocrinol Metab. 2017;102(10):3704-11. CrossRef PubMed PubMedCentral
  30. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837-53. CrossRef  
  31. Maritim A, Sanders R, Watkins J. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17:24-38. CrossRef PubMed
  33. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615-25. CrossRef PubMed
  35. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-70. CrossRef PubMed PubMedCentral
  37. Korshunov S., Skulachev V., Starkov A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997;416:15-8. CrossRef  
  38. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813-20. CrossRef PubMed
  40. Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM. Decrease in mitochondrial complex I activity in ischemic / reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res. 2004;94:53-9. CrossRef PubMed
  42. Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJ. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem. 1990;265:16330-6.
  44. Rosca MG, Mustata TG, Kinter MT, Ozdemir AM, Kern TS, Szweda LI, Brownlee M, Monnier VM, Weiss MF. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am J Physiol Renal Physiol. 2005;289:F420-30. CrossRef PubMed
  46. Lopez-Lopez JG, Moral-Sanz J, Frazziano G, Gomez-Villalobos MJ, Moreno L, Menendez C, Flores-Hernandez J, Lorente JA, Cogolludo A, Perez-Vizcaino F. Type 1 diabetes-induced hyper-responsiveness to 5-hydroxytryptamine in rat pulmonary arteries via oxidative stress and induction of cyclooxygenase-2. J Pharmacol Exp Ther. 2011;338(1):400-7. CrossRef PubMed
  48. Yang J, Tan Y, Zhao F, Ma Z, Wang Y, Zheng S, Epstein PN, Yu J, Yin X, Zheng Y, Li X, Miao L, Cai L. Angiotensin II plays a critical role in diabetic pulmonary fibrosis most likely via activation of NADPH oxidase-mediated nitrosative damage. Am J Physiol Endocrinol Metab. 2011;301(1):E132-44. CrossRef PubMed
  50. Lu S, Xiang L, Clemmer JS, Mittwede PN, Hester RL. Oxidative stress increases pulmonary vascular permeability in diabetic rats through activation of transient receptor potential melastatin 2 (TRPM2) channels. Microcirculation. 2014;21(8):754-60. CrossRef PubMed PubMedCentral
  52. Clemmer J. S., Xiang L., Lu S., Mittwede P. N., Hester R. L. Hyperglycemia-Mediated Oxidative Stress Increases Pulmonary Vascular Permeability. Microcirculation. 2016;23(3):221-9. CrossRef PubMed PubMedCentral
  54. Igarashi M, Wakasaki H, Takahara N, Ishii H, Jiang ZY, Yamauchi T, Kuboki K, Meier M, Rhodes CJ, King GL. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Invest. 1999;103:185-95. CrossRef PubMed PubMedCentral
  56. Asnaghi V, Gerhardinger C, Hoehn T, Adeboje A, Lorenzi M. A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes. 2003;52(2):506-11. CrossRef PubMed
  58. Chauhan H, Geetha K, Vijay R, Chidrawar UM. Polyol pathway: a review on a potential target for the prevention of diabetic complications. Int J Inventi in Pharmac Sci. 2014;2(2):696-711.
  60. Rapiejko PJ, Northup JK, Evans T, Brown JE, Malbon SS. G-proteins of fat-cells. Role in hormonal regulation of intracellular inositol 1,4,5-trisphosphate. Biochem J. 1986;240(1):35-40. CrossRef PubMed PubMedCentral
  62. Larner J. D-chiro-inositol--its functional role in insulin action and its deficit in insulin resistance. Int J Exp Diabetes Res. 2002;3(1):47-60. CrossRef PubMed PubMedCentral
  64. Gerasimenko JV, Flowerdew SE, Voronina SG, Sukhomlin TK, Tepikin AV, Petersen OH, Gerasimenko OV. Bile acids induce Ca2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors. J Biol Chem. 2006;281(52):40154-63. CrossRef PubMed
  66. Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes. 2004;53(9):2404-11. CrossRef PubMed
  68. Chung S, Ho E, Lam K. Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol. 2003;8(3):233-36. CrossRef  
  69. Lushchak VI. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions. Journal of Amino Acids. 2012 2012:736837. CrossRef PubMed PubMedCentral
  71. Likidlilid A, Patchanans N, Poldee S, Peerapatdit T. Glutathione and glutathione peroxidase in type 1 diabetic patients. J Med Assoc Thai. 2007;90(9):1759-67. CrossRef  
  72. Kalkan IH, Suher M. The relationship between the level of glutathione, impairment of glucose metabolism and complications of diabetes mellitus. Pak J Med Sci. 2013;29(4):938-42. CrossRef  
  73. Yadav D, Mishra M, Joseph AZ, Subramani SK, Mahajan S, Singh N, Bisen PS, Prasad GB. Status of antioxidant and lipid peroxidation in type 2 diabetic human subjects diagnosed with and without metabolic syndrome by using NCEP-ATPIII, IDF and WHO criteria. Obes Res Clin Pract. 2015;9(2):158-67. CrossRef PubMed
  75. Spanidis Y, Mpesios A, Stagos D, Goutzourelas N, BarOr D, Karapetsa M, Zakynthinos E, Spandidos DA, Tsatsakis AM, Leon G, Kouretas D. Assessment of the redox status in patients with metabolic syndrome and type 2 diabetes reveals great variations. Exp Ther Med. 2016;11(3):895-903. CrossRef PubMed PubMedCentral
  77. Biolo G, Massolino B, Di Girolamo FG, Fiotti N, Mearelli F, Mazzucco S, Bertuzzi C, Lazzarini R, Colombatti A, De Cicco M. Intensive insulin therapy increases glutathione synthesis rate in surgical ICU patients with stress hyperglycemia. PLoS One. 2018;13(1):e0190291. CrossRef PubMed PubMedCentral
  79. Sekhar R, McKay S, Patel S. Glutathione synthesisi diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care. 2011;34(1):162-7. CrossRef PubMed PubMedCentral
  81. Ohtaka M, Tawata M, Hosaka Y, Onaya T. Glucose modulation of aldose reductase mRNA expression and its activity in cultured calf pulmonary artery endothelial cells. Diabetologia. 1992;35:730-4.
  83. Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab. 2006;290(1):E1 - E8. CrossRef PubMed PubMedCentral
  85. Peterson SB, Hart GW. New insights: A role for OGlcNAcylation in diabetic complications. Crit Rev Biochem Mol Biol. 2016;51(3):150-61. CrossRef PubMed
  87. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest. 1997;100(1):115-26. CrossRef PubMed PubMedCentral
  89. Mellor H, Parker P. The extended protein kinase C superfamily. Biochem J. 1998;332:281-92. CrossRef PubMed PubMedCentral
  91. Singh RM, Cummings E, Pantos C, Singh J. Protein kinase C and cardiac dysfunction: a review. Heart Fail Rev. 2017;22(6):843-59. CrossRef PubMed PubMedCentral
  93. Geraldes P, King G. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319-31. CrossRef PubMed PubMedCentral
  95. Kizub I, Klymenko K, Soloviev A. Protein kinase C in enhanced vascular tone in diabetes mellitus. Int J Cardiol. 2014;174(2):230-42. CrossRef PubMed
  97. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49:1939-45. CrossRef PubMed
  99. Shao B, Bayraktutan U. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase. Redox Biol. 2014;2:694-701. CrossRef PubMed PubMedCentral
  101. Liu S, Ma X, Gong M, Shi L, Lincoln T, Wang S. Glucose down-regulation of cGMP-dependent protein kinase I expression in vascular smooth muscle cell involves NAD(P) H oxidase-derived reactive oxygen species. Free Radic Biol Med. 2007;42:852-63. CrossRef PubMed
  103. Hansen SS, Aasum E, Hafstad AD. The role of NADPH oxidases in diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis. 2017;1864(5 B):1908-13. CrossRef PubMed
  105. Li L, Renier G. Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metabolism. 2006;55:1516-23. CrossRef PubMed
  107. Gao L, Mann GE. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res. 2009;82(1):9-20. CrossRef PubMed
  109. Das EN, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 2007;55:498-510. CrossRef PubMed
  111. Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest. 1991;87:1643-48. CrossRef PubMed PubMedCentral
  113. Omanwar S, Gupta C, Dhyani N, Saidullah B. NO (Nitric Oxide) to Type 2 Diabetes Induced Endothelial Dysfunction: Crosstalk with ET-1 (Endothelin-1). Open Acc J of Toxicol. 2017;2(1): 555578. CrossRef   Kizub IV, Pavlova OO, Johnson CD, Soloviev AI, AV Zholos AV. Protein kinase C (PKC) involved in enhancement of α1-adrenoceptor-mediated responses of the main pulmonary artery in rats with diabetes mellitus. Visnyk of Dnipropetrovsk University. Biology, medicine. 2017;8(2):287-92.[Ukranian] CrossRef  
  114. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318(20):1315-21. CrossRef PubMed
  116. Sell DR, Monnier VM. Molecular basis of arterial stiffening: role of glycation - a mini-review. Gerontology. 2012;58(3):227-37. CrossRef PubMed
  118. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18(1): 1-14. CrossRef PubMed PubMedCentral
  120. Bernheim J, Rashid G, Gavrieli R, Korzets Z, Wolach B. In vitro effect of advanced glycation end-products on human polymorphonuclear superoxide production. Eur J Clin Invest. 2001;31(12):1064-69. CrossRef PubMed
  122. Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194-222. CrossRef PubMed PubMedCentral
  124. Mateo MC, Bustamante JB, Cantalapiedra MA. Serum, zinc, copper and insulin in diabetes mellitus. Biomedicine. 1978;29(2):56-8.
  126. Kaye TB, Guay AT, Simonson DC. Non-insulin-dependent diabetes mellitus and elevated serum ferritin level. J Diabetes Complications. 1993;7(4):246-9. CrossRef  
  127. Civelek S, Gelişgen R, Andican G, Seven A, Küçük SH, Ozdoğan M, Burçak G. Advanced glycation end products and antioxidant status in nondiabetic and streptozotocin induced diabetic rats: effects of copper treatment. Biometals. 2010;23(1):43-9. CrossRef PubMed
  129. Renuka P, Vasantha M. Study of the Serum Levels of Iron, Ferritin and Magnesium in Diabetic Complications. IJPCR. 2016;8(4):254-9.
  131. Ahmed N, Babaei-Jadidi R, Howell SK, Beisswenger PJ, Thornalley PJ. Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia. 2005;48:1590-603. CrossRef PubMed
  133. Ahmed N. Advanced glycation endproducts--role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67(1):3-21. CrossRef PubMed
  135. Wautier JL, GuillausseauPJ. Advanced glycation end products, their receptors and diabetic angiopathy. Diabetes Metab. 2001;27(5):535-42.
  137. Nogueira-Machado J,Machado J, Chaves M. From hyperglycemia to AGE-RAGE interaction on the cell surface: a dangerous metabolic route for diabetic patients. Expert Opin Ther Targets. 2008;12(7):871-82. CrossRef PubMed
  139. Guo H, Xu Y. Role of Advanced Glycation End Products in the Progression of Diabetes Mellitus. Glob J Obes Diabetes Metab Syndr. 2017;4(1):024-35. CrossRef  
  140. Bucala R, Tracey KJ, Cerami A. Advanced glycosylation end products quench nitric oxide and mediate defective endothelium-dependent vasodilation in experimental diabetes. J Clin Invest. 1991;87:432-38. CrossRef PubMed PubMedCentral
  142. Vlassara H, Fuh H, Makita Z, Krungkrai S, Cerami A, Bucala R. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci U S A. 1992;89:12043-47. CrossRef PubMed PubMedCentral
  144. Vlassara H, Fuh H, Donnelly T, Cybulsky M. Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol Med. 1995;1:447-56. CrossRef PubMed PubMedCentral
  146. Cai W, Ramdas M, Zhu L, Chen X, Striker GE, Vlassara H. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci U S A. 2012;109(39):15888-93. CrossRef PubMed PubMedCentral
  148. Buckley ST,Ehrhardt C. The receptor for advanced glycation end products (RAGE) and the lung. J Biomed Biotechnol. 2010;2010:917108. CrossRef PubMed PubMedCentral
  150. Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, Nowygrod R, Neeper M, Przysiecki C, Shaw A, Migheli A, Stern D. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol. 1993;143(6):1699-712.
  152. Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D. Cellular Receptors for Advanced Glycation End Products. Implications for Induction of Oxidant Stress and Cellular Dysfunction in the Pathogenesis of Vascular Lesions. Arterioscler Thromb. 1994;14(10):1521-8. CrossRef PubMed
  154. Meloche J, Courchesne A, Barrier M, Carter S, Bisserier M, Paulin R, Lauzon-Joset JF, Breuils-Bonnet S, Tremblay É, Biardel S, Racine C, Courture C, Bonnet P, Majka SM, Deshaies Y, Picard F, Provencher S, Bonnet S. Critical Role for the Advanced Glycation End Products Receptor in Pulmonary Arterial Hypertension Etiology. J Am Heart Assoc. 2013;2(1):e005157. CrossRef PubMed PubMedCentral
  156. Matsuse T, Ohga T, Teramoto S, Fukayama M, Nagai R, Horiuchi S, Ouchi Y. Immunohistochemical localisation of advanced glycation end products in pulmonary fibrosis. J Clin Pathol. 1998;51(7):515-19. CrossRef PubMed PubMedCentral
  158. Oczypok EA, Milutinovic PS, Alcorn JF, Khare A, Crum LT, Manni ML, Epperly MW, Pawluk AM, Ray A, Oury TD. Pulmonary receptor for advanced glycation endproducts promotes asthma pathogenesis through IL-33 and accumulation of group 2 innate lymphoid cells. J Allergy Clin Immunol. 2015;136(3):747-56. CrossRef PubMed PubMedCentral
  160. Mukherjee TK, Mukhopadhyay S, Hoidal JR. Implication of receptor for advanced glycation end product (RAGE) in pulmonary health and pathophysiology. Respir Physiol Neurobiol. 2008;162(3):210-5. CrossRef PubMed
  162. Varsano-Aharona N, Echemendia E, Yalow R. Early insulin responses to glucose and to tolbutamide in maturityonset diabetes. Metabolism. 1970;19(6):409-17. CrossRef  
  163. Wilcox G. Insulin and Insulin Resistance. Clin Biochem Rev. 2005;26(2):19-39.
  165. Lucidi P, Rossetti P, Porcellati F, Pampanelli S, Candeloro P, Andreoli AM, Perriello G, Bolli GB, Fanelli CG. Mechanisms of Insulin Resistance After Insulin-Induced Hypoglycemia in Humans: The Role of Lipolysis. Diabetes. 2010;59(6):1349-57. CrossRef PubMed PubMedCentral
  167. Patti ME, Kahn CR. The insulin receptor--a critical link in glucose homeostasis and insulin action. J Basic Clin Physiol Pharmacol. 1998;9(2-4):89-109. CrossRef PubMed
  169. Catalano KJ, Maddux BA, Szary J, Youngren JF, Goldfine ID, Schaufele F. Insulin resistance induced by hyperinsulinemia coincides with a persistent alteration at the insulin receptor tyrosine kinase domain. PLOS ONE. 2014;9(9):e108693. CrossRef PubMed PubMedCentral
  171. Taylor SI, Kadowaki T, Kadowaki H, Accili D, Cama A, McKeon C. Mutations in insulin-receptor gene in insulinresistant patients. Diabetes Care. 1990;13(3):257-79. CrossRef PubMed
  173. Kido Y, Nakae J, Accili D. The Insulin Receptor and Its Cellular Targets. J Clin Endocrinol Metab. 2001;86(3):972-9. CrossRef PubMed
  175. Højlund K. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan Med J. 2014;61(7):B4890.
  177. Fujita S, Kuroda Y, Fukui K, Iwamoto R, Kozawa J, Watanabe T, Yamada Y, Imagawa A, Iwahashi H, Shimomura I. Hyperinsulinemia and Insulin Receptor Gene Mutation in Nonobese Healthy Subjects in Japan. J Endocr Soc. 2017;1(11):1351-1361. CrossRef PubMed PubMedCentral
  179. Transgenic hyperinsulinemia: a mouse model of insulin resistance and glucose intolerance without obesity / Ed. Marban S, L, Roth J. USA, Boston: Birkhauser, 1996; 201-24. CrossRef  
  180. Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care. 2008;31(2):S26288. CrossRef PubMed
  182. Zmora E, Gewolb IH, ShapiroDL. Effects of Insulin and Glucose on Pulmonary Insulin Receptors in Late Gestation Fetal Rats. Exp Lung Res. 1992;18(2):247-58. CrossRef PubMed
  184. Olefsky JM, Kolterman OG. Mechanisms of insulin resistance in obesity and noninsulin-dependent (type II) diabetes. Am J Med. 1981;70(1):151-68. CrossRef  
  185. Borissova AM, Tankova TI, Koev DJ. Insulin secretion, peripheral insulin sensitivity and insulin-receptor binding in subjects with different degrees of obesity. Diabetes Met. 2004;30(5):425-31. CrossRef  
  186. Ulane RE, GraeberJE, Steinherz R. A comparison of insulin receptors in the developing fetal lung in normal and in streptozotocin-induced diabetic pregnancies. Pediatr Pulmonol. 1985;1(3):S86-90.
  188. Trammell AW, Talati M, Blackwell TR, Fortune NL, Niswender KD, Fessel JP, Newman JH, West JD, Hemnes AR. Pulmonary vascular effect of insulin in a rodent model of pulmonary arterial hypertension. Pulm Circ. 2017;7(3):624-34. CrossRef PubMed PubMedCentral
  190. Han Y, Cho YE, Ayon R, Guo R, Youssef KD, Pan M, Dai A, Yuan JX, Makino A. SGLT inhibitors attenuate NO-dependent vascular relaxation in the pulmonary artery but not in the coronary artery. Am J Physiol Lung Cell Mol Physiol. 2015;309(9):L1027-36. CrossRef PubMed PubMedCentral
  192. McNally PG, Lawrence IG, Watt PA, Hillier C, Burden AC, Thurston H. The effect of insulin on the vascular reactivity of isolated resistance arteries taken from healthy volunteers. Diabetologia. 1995;38(4):467-73. CrossRef PubMed
  194. Muniyappa R, Yavuz S. Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act. Mol Cell Endocrinol. 2013;378(1-2):59-69. CrossRef PubMed PubMedCentral
  196. Romanko O, Ali M, Mintz J. Insulin resistance impairs endothelial function but not adrenergic reactivity or vascular structure in fructose-fed rats. Microcirculation. 2009;16(5):414-23. CrossRef PubMed PubMedCentral
  198. Sowers JR. Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol. 2004;286(5):1597-602. CrossRef PubMed
  200. Zamanian R, Hansmann G, Snook S. Insulin resistance in pulmonary arterial hypertension. Eur Respir J. 2009;33(2):318-24. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2021.