DIABETES MELLITUS AND PULMONARY CIRCULATION (PART 1)
N.V. Dobrelia, A.S. Khromov
Institute of Pharmacology and Toxicology of National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz65.02.097
Abstract
Increased attention has been paid recently to the effect of
diabetes on the pulmonary blood flow with indicating a dramatic
growth in lung diseases and the possible association
of diabetes with pulmonary arterial hypertension. Chronic
hyperglycemia triggers a cascade of pathological reactions
based on the oxidative stress stipulated by increase in number
of the free electron donors with strengthening the electron
stream in the mitochondrial electron transport chain. The
numerous studies confirm an increase in concentration of
the active oxygen forms in the pulmonary arteries as well in
diabetes mellitus, so this mechanism may be regarded as an
universal for both systemic and pulmonary circulation. The
effects of hyperglycemia, namely oxidative stress, activation of
the polyol and hexosamine pathways of glucose metabolism,
activation of protein kinase with enhanced formation of the
glycation final products increase the constricting capacity of
the blood vessels in the greater circulation, but any effects of
these factors on the blood vessels in the lesser circulation have
been studied insufficiently. An expression of insulin receptors and glucose transporters has been revealed in the lung tissue,
but virtually no data exist on their localization and density in
the pulmonary artery wall, or any changes at the receptor or
postreceptor levels in insulin resistance and diabetes mellitus.
Keywords:
diabetes mellitus; hyperglycemia; pulmonary artery; insulin resistance.
References
- Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34:2436-46.
CrossRef
PubMed PubMedCentral
- Ehrlich SF, Quesenberry CP, Van Den Eeden SK, Shan J, Ferrara A. Patients diagnosed with diabetes are at increased risk for asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and pneumonia but not lung cancer. Diabetes Care. 2010;33(1):55-60.
CrossRef
PubMed PubMedCentral
- Jagadapillai R, Rane MJ, Lin X, Roberts AM, Hoyle GW, Cai L, Gozal E. Diabetic Microvascular Disease and Pulmonary Fibrosis: The Contribution of Platelets and Systemic Inflammation. Int J Mol Sci. 2017;7(11):1853.
CrossRef
PubMed PubMedCentral
- Hsiao YT, Cheng WC, Liao WC, Lin CL, Shen TC, Chen WC, Chen CH, Kao CH. Type 1 Diabetes and Increased Risk of Subsequent Asthma: A Nationwide Population-Based Cohort Study. Medicine (Baltimore). 2015;94(36):e1466.
CrossRef
PubMed PubMedCentral
- Kent BD, Grote L, Ryan S, Pépin JL, Bonsignore MR, Tkacova R, Saaresranta T, Verbraecken J, Lévy P, Hedner J, McNicholas WT. Diabetes mellitus prevalence and control in sleep-disordered breathing: the European Sleep Apnea Cohort (ESADA) study. Chest. 2014;146(4):982-90.
CrossRef
PubMed
- Cheepsattayakorn A., Cheepsattayakorn R. Pulmonary Infectious Diseases in Association with Diabetes Mellitus. J Lung Pulm Respir Res. 2017;4(3):1-4.
CrossRef
- Grinnan D, Farr G, Fox A, Sweeney L. The role of hyperglycemia and insulin resistance in the development and progression of pulmonary arterial hypertension. J Diabetes Res. 2016;2016:7.
CrossRef
PubMed PubMedCentral
- Pan M, Han Y, Si R, Guo R, Desai A, Makino A. Hypoxiainduced pulmonary hypertension in type 2 diabetic mice. Pulm Circ. 2017;7(1):175-85.
CrossRef
PubMed PubMedCentral
- Trammell AW, Talati M, Blackwell TR, Fortune NL, Niswender KD, Fessel JP, Newman JH, West JD, Hemnes AR. Pulmonary vascular effect of insulin in a rodent model of pulmonary arterial hypertension. Pulm Circ. 2017;7(3):624-34.
CrossRef
PubMed PubMedCentral
- Pugh ME, Robbins IM, Rice TW, West J, Newman JH, Hemnes AR. Unrecognized glucose intolerance is common in pulmonary arterial hypertension. J Heart Lung Transplant. 2011;30(8):904-11.
CrossRef
PubMed PubMedCentral
- Abernethy AD, Stackhouse K, Hart S, Devendra G, Bashore TM, Dweik R, Krasuski RA. Impact of diabetes in patients with pulmonary hypertension. Pulm Circ. 2015;5(1):117-23.
CrossRef
PubMed PubMedCentral
- Pitocco D, Tesauro M, Alessandro R, Ghirlanda G, Cardillo C. Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci. 2013;14(11):21525-50.
CrossRef
PubMed PubMedCentral
- The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977-86.
CrossRef
PubMed
- Pistrosch F, Natali A, Hanefeld M. Is Hyperglycemia a Cardiovascular Risk Factor? Diabetes Care. - 2011;34(2):S128-31.
CrossRef
PubMed PubMedCentral
- Tinsley LJ, Kupelian V, D'Eon SA, Pober D, Sun JK, King GL, Keenan HA. Association of Glycemic Control With Reduced Risk for Large-Vessel Disease After More Than 50 Years of Type 1 Diabetes. J Clin Endocrinol Metab. 2017;102(10):3704-11.
CrossRef
PubMed PubMedCentral
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837-53.
CrossRef
- Maritim A, Sanders R, Watkins J. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17:24-38.
CrossRef
PubMed
- Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615-25.
CrossRef
PubMed
- Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-70.
CrossRef
PubMed PubMedCentral
- Korshunov S., Skulachev V., Starkov A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997;416:15-8.
CrossRef
- Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813-20.
CrossRef
PubMed
- Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM. Decrease in mitochondrial complex I activity in ischemic / reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res. 2004;94:53-9.
CrossRef
PubMed
- Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJ. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem. 1990;265:16330-6.
- Rosca MG, Mustata TG, Kinter MT, Ozdemir AM, Kern TS, Szweda LI, Brownlee M, Monnier VM, Weiss MF. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am J Physiol Renal Physiol. 2005;289:F420-30.
CrossRef
PubMed
- Lopez-Lopez JG, Moral-Sanz J, Frazziano G, Gomez-Villalobos MJ, Moreno L, Menendez C, Flores-Hernandez J, Lorente JA, Cogolludo A, Perez-Vizcaino F. Type 1 diabetes-induced hyper-responsiveness to 5-hydroxytryptamine in rat pulmonary arteries via oxidative stress and induction of cyclooxygenase-2. J Pharmacol Exp Ther. 2011;338(1):400-7.
CrossRef
PubMed
- Yang J, Tan Y, Zhao F, Ma Z, Wang Y, Zheng S, Epstein PN, Yu J, Yin X, Zheng Y, Li X, Miao L, Cai L. Angiotensin II plays a critical role in diabetic pulmonary fibrosis most likely via activation of NADPH oxidase-mediated nitrosative damage. Am J Physiol Endocrinol Metab. 2011;301(1):E132-44.
CrossRef
PubMed
- Lu S, Xiang L, Clemmer JS, Mittwede PN, Hester RL. Oxidative stress increases pulmonary vascular permeability in diabetic rats through activation of transient receptor potential melastatin 2 (TRPM2) channels. Microcirculation. 2014;21(8):754-60.
CrossRef
PubMed PubMedCentral
- Clemmer J. S., Xiang L., Lu S., Mittwede P. N., Hester R. L. Hyperglycemia-Mediated Oxidative Stress Increases Pulmonary Vascular Permeability. Microcirculation. 2016;23(3):221-9.
CrossRef
PubMed PubMedCentral
- Igarashi M, Wakasaki H, Takahara N, Ishii H, Jiang ZY, Yamauchi T, Kuboki K, Meier M, Rhodes CJ, King GL. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Invest. 1999;103:185-95.
CrossRef
PubMed PubMedCentral
- Asnaghi V, Gerhardinger C, Hoehn T, Adeboje A, Lorenzi M. A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes. 2003;52(2):506-11.
CrossRef
PubMed
- Chauhan H, Geetha K, Vijay R, Chidrawar UM. Polyol pathway: a review on a potential target for the prevention of diabetic complications. Int J Inventi in Pharmac Sci. 2014;2(2):696-711.
- Rapiejko PJ, Northup JK, Evans T, Brown JE, Malbon SS. G-proteins of fat-cells. Role in hormonal regulation of intracellular inositol 1,4,5-trisphosphate. Biochem J. 1986;240(1):35-40.
CrossRef
PubMed PubMedCentral
- Larner J. D-chiro-inositol--its functional role in insulin action and its deficit in insulin resistance. Int J Exp Diabetes Res. 2002;3(1):47-60.
CrossRef
PubMed PubMedCentral
- Gerasimenko JV, Flowerdew SE, Voronina SG, Sukhomlin TK, Tepikin AV, Petersen OH, Gerasimenko OV. Bile acids induce Ca2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors. J Biol Chem. 2006;281(52):40154-63.
CrossRef
PubMed
- Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes. 2004;53(9):2404-11.
CrossRef
PubMed
- Chung S, Ho E, Lam K. Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol. 2003;8(3):233-36.
CrossRef
- Lushchak VI. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions. Journal of Amino Acids. 2012 2012:736837.
CrossRef
PubMed PubMedCentral
- Likidlilid A, Patchanans N, Poldee S, Peerapatdit T. Glutathione and glutathione peroxidase in type 1 diabetic patients. J Med Assoc Thai. 2007;90(9):1759-67.
CrossRef
- Kalkan IH, Suher M. The relationship between the level of glutathione, impairment of glucose metabolism and complications of diabetes mellitus. Pak J Med Sci. 2013;29(4):938-42.
CrossRef
- Yadav D, Mishra M, Joseph AZ, Subramani SK, Mahajan S, Singh N, Bisen PS, Prasad GB. Status of antioxidant and lipid peroxidation in type 2 diabetic human subjects diagnosed with and without metabolic syndrome by using NCEP-ATPIII, IDF and WHO criteria. Obes Res Clin Pract. 2015;9(2):158-67.
CrossRef
PubMed
- Spanidis Y, Mpesios A, Stagos D, Goutzourelas N, BarOr D, Karapetsa M, Zakynthinos E, Spandidos DA, Tsatsakis AM, Leon G, Kouretas D. Assessment of the redox status in patients with metabolic syndrome and type 2 diabetes reveals great variations. Exp Ther Med. 2016;11(3):895-903.
CrossRef
PubMed PubMedCentral
- Biolo G, Massolino B, Di Girolamo FG, Fiotti N, Mearelli F, Mazzucco S, Bertuzzi C, Lazzarini R, Colombatti A, De Cicco M. Intensive insulin therapy increases glutathione synthesis rate in surgical ICU patients with stress hyperglycemia. PLoS One. 2018;13(1):e0190291.
CrossRef
PubMed PubMedCentral
- Sekhar R, McKay S, Patel S. Glutathione synthesisi diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care. 2011;34(1):162-7.
CrossRef
PubMed PubMedCentral
- Ohtaka M, Tawata M, Hosaka Y, Onaya T. Glucose modulation of aldose reductase mRNA expression and its activity in cultured calf pulmonary artery endothelial cells. Diabetologia. 1992;35:730-4.
- Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab. 2006;290(1):E1 - E8.
CrossRef
PubMed PubMedCentral
- Peterson SB, Hart GW. New insights: A role for OGlcNAcylation in diabetic complications. Crit Rev Biochem Mol Biol. 2016;51(3):150-61.
CrossRef
PubMed
- Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest. 1997;100(1):115-26.
CrossRef
PubMed PubMedCentral
- Mellor H, Parker P. The extended protein kinase C superfamily. Biochem J. 1998;332:281-92.
CrossRef
PubMed PubMedCentral
- Singh RM, Cummings E, Pantos C, Singh J. Protein kinase C and cardiac dysfunction: a review. Heart Fail Rev. 2017;22(6):843-59.
CrossRef
PubMed PubMedCentral
- Geraldes P, King G. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319-31.
CrossRef
PubMed PubMedCentral
- Kizub I, Klymenko K, Soloviev A. Protein kinase C in enhanced vascular tone in diabetes mellitus. Int J Cardiol. 2014;174(2):230-42.
CrossRef
PubMed
- Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49:1939-45.
CrossRef
PubMed
- Shao B, Bayraktutan U. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase. Redox Biol. 2014;2:694-701.
CrossRef
PubMed PubMedCentral
- Liu S, Ma X, Gong M, Shi L, Lincoln T, Wang S. Glucose down-regulation of cGMP-dependent protein kinase I expression in vascular smooth muscle cell involves NAD(P) H oxidase-derived reactive oxygen species. Free Radic Biol Med. 2007;42:852-63.
CrossRef
PubMed
- Hansen SS, Aasum E, Hafstad AD. The role of NADPH oxidases in diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis. 2017;1864(5 B):1908-13.
CrossRef
PubMed
- Li L, Renier G. Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metabolism. 2006;55:1516-23.
CrossRef
PubMed
- Gao L, Mann GE. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res. 2009;82(1):9-20.
CrossRef
PubMed
- Das EN, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 2007;55:498-510.
CrossRef
PubMed
- Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest. 1991;87:1643-48.
CrossRef
PubMed PubMedCentral
- Omanwar S, Gupta C, Dhyani N, Saidullah B. NO (Nitric Oxide) to Type 2 Diabetes Induced Endothelial Dysfunction: Crosstalk with ET-1 (Endothelin-1). Open Acc J of Toxicol. 2017;2(1): 555578.
CrossRef
Kizub IV, Pavlova OO, Johnson CD, Soloviev AI, AV Zholos AV. Protein kinase C (PKC) involved in enhancement of α1-adrenoceptor-mediated responses of the main pulmonary artery in rats with diabetes mellitus. Visnyk of Dnipropetrovsk University. Biology, medicine. 2017;8(2):287-92.[Ukranian]
CrossRef
- Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318(20):1315-21.
CrossRef
PubMed
- Sell DR, Monnier VM. Molecular basis of arterial stiffening: role of glycation - a mini-review. Gerontology. 2012;58(3):227-37.
CrossRef
PubMed
- Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18(1): 1-14.
CrossRef
PubMed PubMedCentral
- Bernheim J, Rashid G, Gavrieli R, Korzets Z, Wolach B. In vitro effect of advanced glycation end-products on human polymorphonuclear superoxide production. Eur J Clin Invest. 2001;31(12):1064-69.
CrossRef
PubMed
- Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194-222.
CrossRef
PubMed PubMedCentral
- Mateo MC, Bustamante JB, Cantalapiedra MA. Serum, zinc, copper and insulin in diabetes mellitus. Biomedicine. 1978;29(2):56-8.
- Kaye TB, Guay AT, Simonson DC. Non-insulin-dependent diabetes mellitus and elevated serum ferritin level. J Diabetes Complications. 1993;7(4):246-9.
CrossRef
- Civelek S, Gelişgen R, Andican G, Seven A, Küçük SH, Ozdoğan M, Burçak G. Advanced glycation end products and antioxidant status in nondiabetic and streptozotocin induced diabetic rats: effects of copper treatment. Biometals. 2010;23(1):43-9.
CrossRef
PubMed
- Renuka P, Vasantha M. Study of the Serum Levels of Iron, Ferritin and Magnesium in Diabetic Complications. IJPCR. 2016;8(4):254-9.
- Ahmed N, Babaei-Jadidi R, Howell SK, Beisswenger PJ, Thornalley PJ. Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia. 2005;48:1590-603.
CrossRef
PubMed
- Ahmed N. Advanced glycation endproducts--role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67(1):3-21.
CrossRef
PubMed
- Wautier JL, GuillausseauPJ. Advanced glycation end products, their receptors and diabetic angiopathy. Diabetes Metab. 2001;27(5):535-42.
- Nogueira-Machado J,Machado J, Chaves M. From hyperglycemia to AGE-RAGE interaction on the cell surface: a dangerous metabolic route for diabetic patients. Expert Opin Ther Targets. 2008;12(7):871-82.
CrossRef
PubMed
- Guo H, Xu Y. Role of Advanced Glycation End Products in the Progression of Diabetes Mellitus. Glob J Obes Diabetes Metab Syndr. 2017;4(1):024-35.
CrossRef
- Bucala R, Tracey KJ, Cerami A. Advanced glycosylation end products quench nitric oxide and mediate defective endothelium-dependent vasodilation in experimental diabetes. J Clin Invest. 1991;87:432-38.
CrossRef
PubMed PubMedCentral
- Vlassara H, Fuh H, Makita Z, Krungkrai S, Cerami A, Bucala R. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci U S A. 1992;89:12043-47.
CrossRef
PubMed PubMedCentral
- Vlassara H, Fuh H, Donnelly T, Cybulsky M. Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol Med. 1995;1:447-56.
CrossRef
PubMed PubMedCentral
- Cai W, Ramdas M, Zhu L, Chen X, Striker GE, Vlassara H. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci U S A. 2012;109(39):15888-93.
CrossRef
PubMed PubMedCentral
- Buckley ST,Ehrhardt C. The receptor for advanced glycation end products (RAGE) and the lung. J Biomed Biotechnol. 2010;2010:917108.
CrossRef
PubMed PubMedCentral
- Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, Nowygrod R, Neeper M, Przysiecki C, Shaw A, Migheli A, Stern D. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol. 1993;143(6):1699-712.
- Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D. Cellular Receptors for Advanced Glycation End Products. Implications for Induction of Oxidant Stress and Cellular Dysfunction in the Pathogenesis of Vascular Lesions. Arterioscler Thromb. 1994;14(10):1521-8.
CrossRef
PubMed
- Meloche J, Courchesne A, Barrier M, Carter S, Bisserier M, Paulin R, Lauzon-Joset JF, Breuils-Bonnet S, Tremblay É, Biardel S, Racine C, Courture C, Bonnet P, Majka SM, Deshaies Y, Picard F, Provencher S, Bonnet S. Critical Role for the Advanced Glycation End Products Receptor in Pulmonary Arterial Hypertension Etiology. J Am Heart Assoc. 2013;2(1):e005157.
CrossRef
PubMed PubMedCentral
- Matsuse T, Ohga T, Teramoto S, Fukayama M, Nagai R, Horiuchi S, Ouchi Y. Immunohistochemical localisation of advanced glycation end products in pulmonary fibrosis. J Clin Pathol. 1998;51(7):515-19.
CrossRef
PubMed PubMedCentral
- Oczypok EA, Milutinovic PS, Alcorn JF, Khare A, Crum LT, Manni ML, Epperly MW, Pawluk AM, Ray A, Oury TD. Pulmonary receptor for advanced glycation endproducts promotes asthma pathogenesis through IL-33 and accumulation of group 2 innate lymphoid cells. J Allergy Clin Immunol. 2015;136(3):747-56.
CrossRef
PubMed PubMedCentral
- Mukherjee TK, Mukhopadhyay S, Hoidal JR. Implication of receptor for advanced glycation end product (RAGE) in pulmonary health and pathophysiology. Respir Physiol Neurobiol. 2008;162(3):210-5.
CrossRef
PubMed
- Varsano-Aharona N, Echemendia E, Yalow R. Early insulin responses to glucose and to tolbutamide in maturityonset diabetes. Metabolism. 1970;19(6):409-17.
CrossRef
- Wilcox G. Insulin and Insulin Resistance. Clin Biochem Rev. 2005;26(2):19-39.
- Lucidi P, Rossetti P, Porcellati F, Pampanelli S, Candeloro P, Andreoli AM, Perriello G, Bolli GB, Fanelli CG. Mechanisms of Insulin Resistance After Insulin-Induced Hypoglycemia in Humans: The Role of Lipolysis. Diabetes. 2010;59(6):1349-57.
CrossRef
PubMed PubMedCentral
- Patti ME, Kahn CR. The insulin receptor--a critical link in glucose homeostasis and insulin action. J Basic Clin Physiol Pharmacol. 1998;9(2-4):89-109.
CrossRef
PubMed
- Catalano KJ, Maddux BA, Szary J, Youngren JF, Goldfine ID, Schaufele F. Insulin resistance induced by hyperinsulinemia coincides with a persistent alteration at the insulin receptor tyrosine kinase domain. PLOS ONE. 2014;9(9):e108693.
CrossRef
PubMed PubMedCentral
- Taylor SI, Kadowaki T, Kadowaki H, Accili D, Cama A, McKeon C. Mutations in insulin-receptor gene in insulinresistant patients. Diabetes Care. 1990;13(3):257-79.
CrossRef
PubMed
- Kido Y, Nakae J, Accili D. The Insulin Receptor and Its Cellular Targets. J Clin Endocrinol Metab. 2001;86(3):972-9.
CrossRef
PubMed
- Højlund K. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan Med J. 2014;61(7):B4890.
- Fujita S, Kuroda Y, Fukui K, Iwamoto R, Kozawa J, Watanabe T, Yamada Y, Imagawa A, Iwahashi H, Shimomura I. Hyperinsulinemia and Insulin Receptor Gene Mutation in Nonobese Healthy Subjects in Japan. J Endocr Soc. 2017;1(11):1351-1361.
CrossRef
PubMed PubMedCentral
- Transgenic hyperinsulinemia: a mouse model of insulin resistance and glucose intolerance without obesity / Ed. Marban S, L, Roth J. USA, Boston: Birkhauser, 1996; 201-24.
CrossRef
- Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care. 2008;31(2):S26288.
CrossRef
PubMed
- Zmora E, Gewolb IH, ShapiroDL. Effects of Insulin and Glucose on Pulmonary Insulin Receptors in Late Gestation Fetal Rats. Exp Lung Res. 1992;18(2):247-58.
CrossRef
PubMed
- Olefsky JM, Kolterman OG. Mechanisms of insulin resistance in obesity and noninsulin-dependent (type II) diabetes. Am J Med. 1981;70(1):151-68.
CrossRef
- Borissova AM, Tankova TI, Koev DJ. Insulin secretion, peripheral insulin sensitivity and insulin-receptor binding in subjects with different degrees of obesity. Diabetes Met. 2004;30(5):425-31.
CrossRef
- Ulane RE, GraeberJE, Steinherz R. A comparison of insulin receptors in the developing fetal lung in normal and in streptozotocin-induced diabetic pregnancies. Pediatr Pulmonol. 1985;1(3):S86-90.
- Trammell AW, Talati M, Blackwell TR, Fortune NL, Niswender KD, Fessel JP, Newman JH, West JD, Hemnes AR. Pulmonary vascular effect of insulin in a rodent model of pulmonary arterial hypertension. Pulm Circ. 2017;7(3):624-34.
CrossRef
PubMed PubMedCentral
- Han Y, Cho YE, Ayon R, Guo R, Youssef KD, Pan M, Dai A, Yuan JX, Makino A. SGLT inhibitors attenuate NO-dependent vascular relaxation in the pulmonary artery but not in the coronary artery. Am J Physiol Lung Cell Mol Physiol. 2015;309(9):L1027-36.
CrossRef
PubMed PubMedCentral
- McNally PG, Lawrence IG, Watt PA, Hillier C, Burden AC, Thurston H. The effect of insulin on the vascular reactivity of isolated resistance arteries taken from healthy volunteers. Diabetologia. 1995;38(4):467-73.
CrossRef
PubMed
- Muniyappa R, Yavuz S. Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act. Mol Cell Endocrinol. 2013;378(1-2):59-69.
CrossRef
PubMed PubMedCentral
- Romanko O, Ali M, Mintz J. Insulin resistance impairs endothelial function but not adrenergic reactivity or vascular structure in fructose-fed rats. Microcirculation. 2009;16(5):414-23.
CrossRef
PubMed PubMedCentral
- Sowers JR. Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol. 2004;286(5):1597-602.
CrossRef
PubMed
- Zamanian R, Hansmann G, Snook S. Insulin resistance in pulmonary arterial hypertension. Eur Respir J. 2009;33(2):318-24.
CrossRef
PubMed PubMedCentral
|