Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2019; 65(2): 12-21


INFLUENCE OF GROWTH FACTORS ON CRYOPRESERVED MESENCHYMAL STROMAL CELLS

N.O. Volkova, M.S. Yukhta, A.M. Goltsev

    Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
DOI: https://doi.org/10.15407/fz65.02.012

Abstract

The study investigated the effect of growth and differentiation factors on cryopreserved mesenchymal stromal cells from bone marrow, adipose and cartilage tissues. It was shown that the addition of fibroblast growth factor (20 ng / ml) to the culture medium resulted in a 2.6 and 2.1 fold increasing in the proliferative potential of cryopreserved mesenchymal stromal cells (CrMSC) from bone marrow and adipose tissue. The use of transforming growth factor β in concentration 10 ng/ml increased the synthesis of type II collagen by 7.2 and 6.1 times and glycosaminoglycans in 5.1 and 2.6 times, respectively, for CrMSCs from bone marrow and adipose tissue on the 12th day of culturing. Proliferative activity, the synthesis of type II collagen and glycosaminoglycans of CrMSCs from cartilaginous tissue did not undergo changes under the influence of the investigated factors, but they were characterized by a relatively greater activity of synthetic processes compare to CrMSCs from bone marrow and adipose tissue. The obtained data can be used to substantiate and develop a technique for the application of CrMSCs in clinical practice to treat the damages of musculoskeletal system.

Keywords: mesenchymal stromal cells; growth factors; proliferation; collagen; glycosaminoglycans.

References

  1. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage. 2002; 10(6): 432-63. doi: 10.1053/joca.2002.0801. CrossRef PubMed
  2.  
  3. Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JA. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects. Cryobiology. 2015; 71(2): 181-97. doi: 10.1016/j. cryobiol.2015.07.003. CrossRef PubMed
  4.  
  5. Volkova N, Yukhta M, Goltsev A. Cryopreserved mesenchymal stem cells stimulate regeneration in an intervertebral disc. Biomedicines. 2015; 3(3): 237-247. doi:10.3390/biomedicines3030237. CrossRef PubMed PubMedCentral
  6.  
  7. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004; 36(4): 568-84. CrossRef PubMed
  8.  
  9. Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodríguez-Montes JA. A phase I clinical trial of the treatment of crohn's fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005; 48(7): 1416-23. doi: 10.1007/s10350-005-0052-6. CrossRef PubMed
  10.  
  11. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315-7. doi:10.1080/14653240600855905. CrossRef PubMed
  12.  
  13. Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, Ma K, Zhou C. et al. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 2008; 17(4): 761-73. doi: 10.1089/ scd.2007.0217. CrossRef PubMed
  14.  
  15. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004; 14(4-6): 311-24. doi:10.1159/000080341. CrossRef PubMed
  16.  
  17. Du M, Zhu T, Duan X, Ge S, Li N, Sun Q et al. Acellular dermal matrix loading with bFGF achieves similar acceleration of bone regeneration to BMP-2 via differential effects on recruitment, proliferation and sustained osteodifferentiation of mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):62-70. doi: 10.1016/j. msec.2016.08.049. CrossRef PubMed
  18.  
  19. Bocelli-Tyndall C, Zajac P, Di Maggio N, Trella E, Benvenuto F, Iezzi G et al. Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells. Arthritis Rheum. 2010; 62(12): 3815-25. doi: 10.1002/art.27736. CrossRef PubMed
  20.  
  21. DeLise AM, Fischer L, Tuan RS. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage. 2000; 8(5): 309-34. doi: 10.1053/joca.1999.0306. CrossRef PubMed
  22.  
  23. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006; 97(1): 33-44. doi: 10.1002/jcb.20652. CrossRef PubMed
  24.  
  25. Bobick BE, Chen FH, Le AM, Tuan RS. Regulation of the chondrogenic phenotype in culture. Birth Defects Res C Embryo Today. 2009; 87(4): 351-71. doi: 10.1002/ bdrc.20167. CrossRef PubMed
  26.  
  27. Volkova NA, Yukhta MS, Goltsev AN. Morphological and functional characteristics of cryopreserved multipotent mesenchymal stromal cells from bone marrow, adipose tissue and tendons. Cell and Organ Transplantology. 2016; 4 (2): 200-5. doi:10.22494/cot.v4i2.64. CrossRef  
  28. Volkova NA, Yukhta MS, Goltsev AN. Comparative study of the effect of bFGF and plasma rich in growth factors on cryopreserved multipotent mesenchymal stromal cells from bone marrow and tendon of rats. Cell and Organ Transplantology. 2017; 5(2): 170-5. doi:10.22494/cot.v5i2.75. CrossRef  
  29. Volkova NA, Goltsev AN. Sryopreservation effect on proliferation and differentiation potential of cultured chorion cells. CryoLetters. 2015; 36(1): 25-9.
  30.  
  31. Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65: 55-63. CrossRef  
  32. Rodrigues M, Griffith LG, Wells A. Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res Ther. 2010; 1: 32. CrossRef PubMed PubMedCentral
  33.  
  34. van der Kraan PM, Blaney Davidson EN, Blom A, van den Berg WB. TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptorSmads. Osteoarthritis Cartilage. 2009;17(12):1539-45. doi: 10.1016/j.joca.2009.06.008. CrossRef PubMed
  35.  
  36. Kottakis F, Polytarchou Ch., Foltopoulou P, Sanidas I, Kampranis SC, Tsichlis PN. FGF-2 regulates cell proliferation, migration and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell. 2011; 43(2): 285-98. doi: 10.1016/j. molcel.2011.06.020. CrossRef PubMed PubMedCentral
  37.  
  38. Choi SC, Kim SJ, Choi JH, Park C, Shim WJ, Lim DS. Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem Cells Dev. 2008; 17: 725-36. doi:10.1089/scd.2007.0230. CrossRef PubMed
  39.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2020.