|
|
|
|
ROLE OF CALCIUM IONS IN EXCITATION-CONTRACTION COUPLING IN CARDIOMYOCYTES
V.M. Shkryl
Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine; Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz65.01.086
Abstract
Calcium is an important signaling element and universal
intracellular messenger and the determining ion in the process
of Excitation-Contraction Coupling. This review describes
calcium receptors at this process in cardiomyocytes. The
main sources of increase of intracellular calcium level
is entry from extracellular medium by dihydropyridine
receptors and release from internal stores, in particular, from
the sarcoplasmic reticulum (SR) via activation of ryanodine
receptors. The absence of a transverse tubular network in the
atria myocytes makes the Ca2+ release process specific to the
ventricular cells of the myocardium. Atrial myocytes, but
not ventricular, also express inositol triphosphate receptors
that complement the regulation of Ca2+ signal. The calcium
receptors described in this review reveals in more detail of
Excitation-Contraction Coupling and details Ca2+ - dependent
regulation of cardiomyocyte.
Keywords:
Ca2+, ryanodine receptor, cardiomyocyte, calcium induced calcium release, dihydropyridine receptor
References
- Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198-205.
CrossRef
PubMed
- Shkryl VM, Blatter LA. Ca(2+) release events in cardiac myocytes up close: insights from fast confocal imaging. PLoS One. 2013;8(4):e61525.
CrossRef
PubMed PubMedCentral
- Cannell MB, Cheng H, Lederer WJ. Spatial non-uniformities in [Ca2+] i during excitation-contraction coupling in cardiac myocytes. Biophys J. 1994;67(5):1942-56.
CrossRef
- Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1983;245(1):C1-14.
CrossRef
PubMed
- Shkryl VM, Blatter LA, Rios E. Properties of Ca2+ sparks revealed by four-dimensional confocal imaging of cardiac muscle. J Gen Physiol. 2012;139(3):189-207.
CrossRef
PubMed PubMedCentral
- Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23-49.
CrossRef
PubMed
- Langer GA, Peskoff A. Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell. Biophys J. 1996;70(3):1169-82.
CrossRef
- Jones PP, Guo W, Chen SRW. Control of cardiac ryanodine receptor by sarcoplasmic reticulum luminal Ca2+. J Gen Physiol. 2017;149(9):867-75.
CrossRef
PubMed PubMedCentral
- Blatter LA, Kockskamper J, Sheehan KA, Zima AV, Huser J, Lipsius SL. Local calcium gradients during excitationcontraction coupling and alternans in atrial myocytes. J Physiol. 2003;546(Pt 1):19-31.
CrossRef
PubMed PubMedCentral
- MacGowan GA, Kirk JA, Evans C, Shroff SG. Pressure-calcium relationships in perfused mouse hearts. Am J Physiol Heart Circ Physiol. 2006;290(6):H2614-24.
CrossRef
PubMed
- Gambardella J, Trimarco B, Iaccarino G, Santulli G. New Insights in Cardiac Calcium Handling and ExcitationContraction Coupling. Adv Exp Med Biol. 2018;1067:373-85.
CrossRef
PubMed PubMedCentral
- Cleemann L, Wang W, Morad M. Two-dimensional confocal images of organization, density, and gating of focal Ca2+ release sites in rat cardiac myocytes. Proc Natl Acad Sci U S A. 1998;95(18):10984-9.
CrossRef
PubMed PubMedCentral
- Rios E. Perspectives on "Control of Ca release from within the cardiac sarcoplasmic reticulum". J Gen Physiol. 2017;149(9):833-6.
CrossRef
PubMed PubMedCentral
- Shannon TR, Guo T, Bers DM. Ca2+ scraps: local depletions of free [Ca2+] in cardiac sarcoplasmic reticulum during contractions leave substantial Ca2+ reserve. Circ Res. 2003;93(1):40-5.
CrossRef
PubMed
- Franzini-Armstrong C, Jorgensen AO. Structure and development of E-C coupling units in skeletal muscle. Annu Rev Physiol. 1994;56:509-34.
CrossRef
PubMed
- Franzini-Armstrong C, Protasi F, Ramesh V. Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle. Ann N Y Acad Sci. 1998;853:20-30.
CrossRef
PubMed
- Carl SL, Felix K, Caswell AH, Brandt NR, Ball WJ, Jr., Vaghy PL, et al. Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium. J Cell Biol. 1995;129(3):673-82.
CrossRef
PubMed
- Stern MD, Pizarro G, Rios E. Local control model of excitation-contraction coupling in skeletal muscle. J Gen Physiol. 1997;110(4):415-40.
CrossRef
PubMed PubMedCentral
- Soeller C, Crossman D, Gilbert R, Cannell MB. Analysis of ryanodine receptor clusters in rat and human cardiac myocytes. Proc Natl Acad Sci U S A. 2007;104(38):14958-63.
CrossRef
PubMed PubMedCentral
- Hou Y, Jayasinghe I, Crossman DJ, Baddeley D, Soeller C. Nanoscale analysis of ryanodine receptor clusters in dyadic couplings of rat cardiac myocytes. J Mol Cell Cardiol. 2015;80:45-55.
CrossRef
PubMed
- Wibo M, Bravo G, Godfraind T. Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4-dihydropyridine and ryanodine receptors. Circ Res. 1991;68(3):662-73.
CrossRef
PubMed
- Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J. 1999;77(3):1528-39.
CrossRef
- Galice S, Xie Y, Yang Y, Sato D, Bers DM. Size Matters: Ryanodine Receptor Cluster Size Affects Arrhythmogenic Sarcoplasmic Reticulum Calcium Release. J Am Heart Assoc. 2018;7(13):1-13.
CrossRef
PubMed PubMedCentral
- Fabiato A. Effects of ryanodine in skinned cardiac cells. Fed Proc. 1985;44(15):2970-6.
PubMed
- Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, et al. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature. 1989;339(6224):439-45.
CrossRef
PubMed
- McPherson PS, Campbell KP. Characterization of the major brain form of the ryanodine receptor/Ca2+ release channel. J Biol Chem. 1993;268(26):19785-90.
PubMed
- Laver DR. Regulation of the RyR channel gating by Ca(2+) and Mg(2+). Biophys Rev. 2018;10(4):1087-95.
CrossRef
PubMed PubMedCentral
- Hernandez-Ochoa EO, Schneider MF. Voltage sensing mechanism in skeletal muscle excitation-contraction coupling: coming of age or midlife crisis? Skelet Muscle. 2018;8(1):22.
CrossRef
PubMed PubMedCentral
- Rios E, Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature. 1987;325(6106):717-20.
CrossRef
PubMed
- Soeller C, Cannell MB. Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ Res. 1999;84(3):266-75.
CrossRef
PubMed
- Shacklock PS, Wier WG, Balke CW. Local Ca2+ transients (Ca2+ sparks) originate at transverse tubules in rat heart cells. J Physiol. 1995;487 (Pt 3):601-8.
CrossRef
PubMed PubMedCentral
- Huser J, Lipsius SL, Blatter LA. Calcium gradients during excitation-contraction coupling in cat atrial myocytes. J Physiol. 1996;494 (Pt 3):641-51.
CrossRef
PubMed PubMedCentral
- Mackenzie L, Bootman MD, Berridge MJ, Lipp P. Predetermined recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes. J Physiol. 2001;530(Pt 3):417-29.
CrossRef
PubMed PubMedCentral
- Kockskamper J, Sheehan KA, Bare DJ, Lipsius SL, Mignery GA, Blatter LA. Activation and propagation of Ca(2+) release during excitation-contraction coupling in atrial myocytes. Biophys J. 2001;81(5):2590-605.
CrossRef
- Sheehan KA, Zima AV, Blatter LA. Regional differences in spontaneous Ca2+ spark activity and regulation in cat atrial myocytes. J Physiol. 2006;572(Pt 3):799-809.
CrossRef
PubMed PubMedCentral
- Scriven DR, Asghari P, Moore ED. Microarchitecture of the dyad. Cardiovasc Res. 2013;98(2):169-76.
CrossRef
PubMed
- Stern MD, Song LS, Cheng H, Sham JS, Yang HT, Boheler KR, et al. Local control models of cardiac excitationcontraction coupling. A possible role for allosteric interactions between ryanodine receptors. J Gen Physiol. 1999;113(3):469-89.
CrossRef
PubMed PubMedCentral
- Berlin JR. Spatiotemporal changes of Ca2+ during electrically evoked contractions in atrial and ventricular cells. Am J Physiol. 1995;269(3 Pt 2):H1165-70.
PubMed
- Sheehan KA, Blatter LA. Regulation of junctional and non-junctional sarcoplasmic reticulum calcium release in excitation-contraction coupling in cat atrial myocytes. J Physiol. 2003;546(Pt 1):119-35.
CrossRef
PubMed PubMedCentral
- Keizer J, Smith GD, Ponce-Dawson S, Pearson JE. Saltatory propagation of Ca2+ waves by Ca2+ sparks. Biophys J. 1998;75(2):595-600.
CrossRef
- Meissner G, Henderson JS. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem. 1987;262(7):3065-73.
PubMed
- Cannell MB, Soeller C. Numerical analysis of ryanodine receptor activation by L-type channel activity in the cardiac muscle diad. Biophys J. 1997;73(1):112-22.
CrossRef
- Qin J, Valle G, Nani A, Chen H, Ramos-Franco J, Nori A, et al. Ryanodine receptor luminal Ca2+ regulation: swapping calsequestrin and channel isoforms. Biophys J. 2009;97(7):1961-70.
CrossRef
PubMed PubMedCentral
- Gyorke I, Gyorke S. Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J. 1998;75(6):2801-10.
CrossRef
- Gyorke S, Belevych AE, Liu B, Kubasov IV, Carnes CA, Radwanski PB. The role of luminal Ca regulation in Ca signaling refractoriness and cardiac arrhythmogenesis. J Gen Physiol. 2017;149(9):877-88.
CrossRef
PubMed PubMedCentral
- Keller M, Kao JP, Egger M, Niggli E. Calcium waves driven by "sensitization" wave-fronts. Cardiovasc Res. 2007;74(1):39-45.
CrossRef
PubMed
- Ramay HR, Jafri MS, Lederer WJ, Sobie EA. Predicting local SR Ca(2+) dynamics during Ca(2+) wave propagation in ventricular myocytes. Biophys J. 2010;98(11):2515-23.
CrossRef
PubMed PubMedCentral
- Sobie EA, Williams GSB, Lederer WJ. Ambiguous interactions between diastolic and SR Ca2+ in the regulation of cardiac Ca2+ release. J Gen Physiol. 2017;149(9):847-55.
CrossRef
PubMed PubMedCentral
- Maxwell JT, Blatter LA. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes. J Physiol. 2012;590(23):6037-45.
CrossRef
PubMed PubMedCentral
- Maxwell JT, Blatter LA. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca2+ during excitation-contraction coupling in atrial myocytes. J Physiol. 2017;595(12):3835-45.
CrossRef
PubMed PubMedCentral
- Chen H, Valle G, Furlan S, Nani A, Gyorke S, Fill M, et al. Mechanism of calsequestrin regulation of single cardiac ryanodine receptor in normal and pathological conditions. J Gen Physiol. 2013;142(2):127-36.
CrossRef
PubMed PubMedCentral
- Ching LL, Williams AJ, Sitsapesan R. Evidence for Ca(2+) activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex. Circ Res. 2000;87(3):201-6.
CrossRef
PubMed
- Terentyev D, Viatchenko-Karpinski S, Gyorke I, Volpe P, Williams SC, Gyorke S. Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: Mechanism for hereditary arrhythmia. Proc Natl Acad Sci U S A. 2003;100(20):11759-64.
CrossRef
PubMed PubMedCentral
- Gyorke S, Stevens SC, Terentyev D. Cardiac calsequestrin: quest inside the SR. J Physiol. 2009;587(Pt 13):3091-4.
CrossRef
PubMed PubMedCentral
- Stern MD. Theory of excitation-contraction coupling in cardiac muscle. Biophys J. 1992;63(2):497-517.
CrossRef
- Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K, Marks AR. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res. 2001;88(11):1151-8.
CrossRef
PubMed
- Laver DR, Kong CH, Imtiaz MS, Cannell MB. Termination of calcium-induced calcium release by induction decay: an emergent property of stochastic channel gating and molecular scale architecture. J Mol Cell Cardiol. 2013;54:98-100.
CrossRef
PubMed
- Gillespie D, Fill M. Pernicious attrition and inter-RyR2 CICR current control in cardiac muscle. J Mol Cell Cardiol. 2013;58:53-8.
CrossRef
PubMed PubMedCentral
- Blatter LA. The intricacies of atrial calcium cycling during excitation-contraction coupling. J Gen Physiol. 2017;149(9):857-65.
CrossRef
PubMed PubMedCentral
- Schulson MN, Scriven DR, Fletcher P, Moore ED. Couplons in rat atria form distinct subgroups defined by their molecular partners. J Cell Sci. 2011;124(Pt 7):1167-74.
CrossRef
PubMed PubMedCentral
- Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993;262(5134):740-4.
CrossRef
PubMed
- Blatter LA, Huser J, Rios E. Sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks in cardiac muscle. Proc Natl Acad Sci U S A. 1997;94(8):4176-81.
CrossRef
PubMed PubMedCentral
- Banyasz T, Chen-Izu Y, Balke CW, Izu LT. A new approach to the detection and statistical classification of Ca2+ sparks. Biophys J. 2007;92(12):4458-65.
CrossRef
PubMed PubMedCentral
- Brum G, Gonzalez A, Rengifo J, Shirokova N, Rios E. Fast imaging in two dimensions resolves extensive sources of Ca2+ sparks in frog skeletal muscle. J Physiol. 2000;528(Pt 3):419-33.
CrossRef
PubMed PubMedCentral
- Gonzalez A, Kirsch WG, Shirokova N, Pizarro G, Brum G, Pessah IN, et al. Involvement of multiple intracellular release channels in calcium sparks of skeletal muscle. Proc Natl Acad Sci U S A. 2000;97(8):4380-5.
CrossRef
PubMed PubMedCentral
- Cheng H, Lederer MR, Xiao RP, Gomez AM, Zhou YY, Ziman B, et al. Excitation-contraction coupling in heart: new insights from Ca2+ sparks. Cell Calcium. 1996;20(2):129-40.
CrossRef
- Budko AY, Strutynska NA, Okhay IY, Semenykhina OM, Sagach VF. [Ca(2+) accumulation in isolated rat heart mitochondria under maintenance of mitochondrial potential]. Fiziol Zh. 2015;61(6):17-25. [Ukrainian].
CrossRef
PubMed
- Bassani RA, Bassani JW, Bers DM. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems. J Physiol. 1994;476(2):295-308.
CrossRef
PubMed PubMedCentral
- Jouaville LS, Ichas F, Holmuhamedov EL, Camacho P, Lechleiter JD. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature. 1995;377(6548):438-41.
CrossRef
PubMed
- Shkryl VM, Shirokova N. Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle. J Biol Chem. 2006;281(3):1547-54.
CrossRef
PubMed
- Niggli E. Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. Annu Rev Physiol. 1999;61:311-35.
CrossRef
PubMed
- Santulli G, Nakashima R, Yuan Q, Marks AR. Intracellular calcium release channels: an update. J Physiol. 2017; 595(10):3041-51.
CrossRef
PubMed PubMedCentral
- Domeier TL, Zima AV, Maxwell JT, Huke S, Mignery GA, Blatter LA. IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol. 2008;294(2):H596-604.
CrossRef
PubMed
- Kockskamper J, Zima AV, Roderick HL, Pieske B, Blatter LA, Bootman MD. Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol. 2008;45(2):128-47.
CrossRef
PubMed PubMedCentral
|
|
|
|
|
|
|