Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2019; 65(1): 86-96


V.M. Shkryl

    Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine; Kyiv, Ukraine


Calcium is an important signaling element and universal intracellular messenger and the determining ion in the process of Excitation-Contraction Coupling. This review describes calcium receptors at this process in cardiomyocytes. The main sources of increase of intracellular calcium level is entry from extracellular medium by dihydropyridine receptors and release from internal stores, in particular, from the sarcoplasmic reticulum (SR) via activation of ryanodine receptors. The absence of a transverse tubular network in the atria myocytes makes the Ca2+ release process specific to the ventricular cells of the myocardium. Atrial myocytes, but not ventricular, also express inositol triphosphate receptors that complement the regulation of Ca2+ signal. The calcium receptors described in this review reveals in more detail of Excitation-Contraction Coupling and details Ca2+ - dependent regulation of cardiomyocyte.

Keywords: Ca2+, ryanodine receptor, cardiomyocyte, calcium induced calcium release, dihydropyridine receptor


  1. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198-205. CrossRef PubMed
  3. Shkryl VM, Blatter LA. Ca(2+) release events in cardiac myocytes up close: insights from fast confocal imaging. PLoS One. 2013;8(4):e61525. CrossRef PubMed PubMedCentral
  5. Cannell MB, Cheng H, Lederer WJ. Spatial non-uniformities in [Ca2+] i  during excitation-contraction coupling in cardiac myocytes. Biophys J. 1994;67(5):1942-56. CrossRef  
  6. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1983;245(1):C1-14. CrossRef PubMed
  8. Shkryl VM, Blatter LA, Rios E. Properties of Ca2+ sparks revealed by four-dimensional confocal imaging of cardiac muscle. J Gen Physiol. 2012;139(3):189-207. CrossRef PubMed PubMedCentral
  10. Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23-49. CrossRef PubMed
  12. Langer GA, Peskoff A. Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell. Biophys J. 1996;70(3):1169-82. CrossRef  
  13. Jones PP, Guo W, Chen SRW. Control of cardiac ryanodine receptor by sarcoplasmic reticulum luminal Ca2+. J Gen Physiol. 2017;149(9):867-75. CrossRef PubMed PubMedCentral
  15. Blatter LA, Kockskamper J, Sheehan KA, Zima AV, Huser J, Lipsius SL. Local calcium gradients during excitationcontraction coupling and alternans in atrial myocytes. J Physiol. 2003;546(Pt 1):19-31. CrossRef PubMed PubMedCentral
  17. MacGowan GA, Kirk JA, Evans C, Shroff SG. Pressure-calcium relationships in perfused mouse hearts. Am J Physiol Heart Circ Physiol. 2006;290(6):H2614-24. CrossRef PubMed
  19. Gambardella J, Trimarco B, Iaccarino G, Santulli G. New Insights in Cardiac Calcium Handling and ExcitationContraction Coupling. Adv Exp Med Biol. 2018;1067:373-85. CrossRef PubMed PubMedCentral
  21. Cleemann L, Wang W, Morad M. Two-dimensional confocal images of organization, density, and gating of focal Ca2+ release sites in rat cardiac myocytes. Proc Natl Acad Sci U S A. 1998;95(18):10984-9. CrossRef PubMed PubMedCentral
  23. Rios E. Perspectives on "Control of Ca release from within the cardiac sarcoplasmic reticulum". J Gen Physiol. 2017;149(9):833-6. CrossRef PubMed PubMedCentral
  25. Shannon TR, Guo T, Bers DM. Ca2+ scraps: local depletions of free [Ca2+] in cardiac sarcoplasmic reticulum during contractions leave substantial Ca2+ reserve. Circ Res. 2003;93(1):40-5. CrossRef PubMed
  27. Franzini-Armstrong C, Jorgensen AO. Structure and development of E-C coupling units in skeletal muscle. Annu Rev Physiol. 1994;56:509-34. CrossRef PubMed
  29. Franzini-Armstrong C, Protasi F, Ramesh V. Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle. Ann N Y Acad Sci. 1998;853:20-30. CrossRef PubMed
  31. Carl SL, Felix K, Caswell AH, Brandt NR, Ball WJ, Jr., Vaghy PL, et al. Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium. J Cell Biol. 1995;129(3):673-82. CrossRef PubMed
  33. Stern MD, Pizarro G, Rios E. Local control model of excitation-contraction coupling in skeletal muscle. J Gen Physiol. 1997;110(4):415-40. CrossRef PubMed PubMedCentral
  35. Soeller C, Crossman D, Gilbert R, Cannell MB. Analysis of ryanodine receptor clusters in rat and human cardiac myocytes. Proc Natl Acad Sci U S A. 2007;104(38):14958-63. CrossRef PubMed PubMedCentral
  37. Hou Y, Jayasinghe I, Crossman DJ, Baddeley D, Soeller C. Nanoscale analysis of ryanodine receptor clusters in dyadic couplings of rat cardiac myocytes. J Mol Cell Cardiol. 2015;80:45-55. CrossRef PubMed
  39. Wibo M, Bravo G, Godfraind T. Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4-dihydropyridine and ryanodine receptors. Circ Res. 1991;68(3):662-73. CrossRef PubMed
  41. Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J. 1999;77(3):1528-39. CrossRef  
  42. Galice S, Xie Y, Yang Y, Sato D, Bers DM. Size Matters: Ryanodine Receptor Cluster Size Affects Arrhythmogenic Sarcoplasmic Reticulum Calcium Release. J Am Heart Assoc. 2018;7(13):1-13. CrossRef PubMed PubMedCentral
  44. Fabiato A. Effects of ryanodine in skinned cardiac cells. Fed Proc. 1985;44(15):2970-6. PubMed
  46. Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, et al. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature. 1989;339(6224):439-45. CrossRef PubMed
  48. McPherson PS, Campbell KP. Characterization of the major brain form of the ryanodine receptor/Ca2+ release channel. J Biol Chem. 1993;268(26):19785-90. PubMed
  50. Laver DR. Regulation of the RyR channel gating by Ca(2+) and Mg(2+). Biophys Rev. 2018;10(4):1087-95. CrossRef PubMed PubMedCentral
  52. Hernandez-Ochoa EO, Schneider MF. Voltage sensing mechanism in skeletal muscle excitation-contraction coupling: coming of age or midlife crisis? Skelet Muscle. 2018;8(1):22. CrossRef PubMed PubMedCentral
  54. Rios E, Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature. 1987;325(6106):717-20. CrossRef PubMed
  56. Soeller C, Cannell MB. Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ Res. 1999;84(3):266-75. CrossRef PubMed
  58. Shacklock PS, Wier WG, Balke CW. Local Ca2+ transients (Ca2+ sparks) originate at transverse tubules in rat heart cells. J Physiol. 1995;487 (Pt 3):601-8. CrossRef PubMed PubMedCentral
  60. Huser J, Lipsius SL, Blatter LA. Calcium gradients during excitation-contraction coupling in cat atrial myocytes. J Physiol. 1996;494 (Pt 3):641-51. CrossRef PubMed PubMedCentral
  62. Mackenzie L, Bootman MD, Berridge MJ, Lipp P. Predetermined recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes. J Physiol. 2001;530(Pt 3):417-29. CrossRef PubMed PubMedCentral
  64. Kockskamper J, Sheehan KA, Bare DJ, Lipsius SL, Mignery GA, Blatter LA. Activation and propagation of Ca(2+) release during excitation-contraction coupling in atrial myocytes. Biophys J. 2001;81(5):2590-605. CrossRef  
  65. Sheehan KA, Zima AV, Blatter LA. Regional differences in spontaneous Ca2+ spark activity and regulation in cat atrial myocytes. J Physiol. 2006;572(Pt 3):799-809. CrossRef PubMed PubMedCentral
  67. Scriven DR, Asghari P, Moore ED. Microarchitecture of the dyad. Cardiovasc Res. 2013;98(2):169-76. CrossRef PubMed
  69. Stern MD, Song LS, Cheng H, Sham JS, Yang HT, Boheler KR, et al. Local control models of cardiac excitationcontraction coupling. A possible role for allosteric interactions between ryanodine receptors. J Gen Physiol. 1999;113(3):469-89. CrossRef PubMed PubMedCentral
  71. Berlin JR. Spatiotemporal changes of Ca2+ during electrically evoked contractions in atrial and ventricular cells. Am J Physiol. 1995;269(3 Pt 2):H1165-70. PubMed
  73. Sheehan KA, Blatter LA. Regulation of junctional and non-junctional sarcoplasmic reticulum calcium release in excitation-contraction coupling in cat atrial myocytes. J Physiol. 2003;546(Pt 1):119-35. CrossRef PubMed PubMedCentral
  75. Keizer J, Smith GD, Ponce-Dawson S, Pearson JE. Saltatory propagation of Ca2+ waves by Ca2+ sparks. Biophys J. 1998;75(2):595-600. CrossRef  
  76. Meissner G, Henderson JS. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem. 1987;262(7):3065-73. PubMed
  78. Cannell MB, Soeller C. Numerical analysis of ryanodine receptor activation by L-type channel activity in the cardiac muscle diad. Biophys J. 1997;73(1):112-22. CrossRef  
  79. Qin J, Valle G, Nani A, Chen H, Ramos-Franco J, Nori A, et al. Ryanodine receptor luminal Ca2+ regulation: swapping calsequestrin and channel isoforms. Biophys J. 2009;97(7):1961-70. CrossRef PubMed PubMedCentral
  81. Gyorke I, Gyorke S. Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J. 1998;75(6):2801-10. CrossRef  
  82. Gyorke S, Belevych AE, Liu B, Kubasov IV, Carnes CA, Radwanski PB. The role of luminal Ca regulation in Ca signaling refractoriness and cardiac arrhythmogenesis. J Gen Physiol. 2017;149(9):877-88. CrossRef PubMed PubMedCentral
  84. Keller M, Kao JP, Egger M, Niggli E. Calcium waves driven by "sensitization" wave-fronts. Cardiovasc Res. 2007;74(1):39-45. CrossRef PubMed
  86. Ramay HR, Jafri MS, Lederer WJ, Sobie EA. Predicting local SR Ca(2+) dynamics during Ca(2+) wave propagation in ventricular myocytes. Biophys J. 2010;98(11):2515-23. CrossRef PubMed PubMedCentral
  88. Sobie EA, Williams GSB, Lederer WJ. Ambiguous interactions between diastolic and SR Ca2+ in the regulation of cardiac Ca2+ release. J Gen Physiol. 2017;149(9):847-55. CrossRef PubMed PubMedCentral
  90. Maxwell JT, Blatter LA. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes. J Physiol. 2012;590(23):6037-45. CrossRef PubMed PubMedCentral
  92. Maxwell JT, Blatter LA. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca2+ during excitation-contraction coupling in atrial myocytes. J Physiol. 2017;595(12):3835-45. CrossRef PubMed PubMedCentral
  94. Chen H, Valle G, Furlan S, Nani A, Gyorke S, Fill M, et al. Mechanism of calsequestrin regulation of single cardiac ryanodine receptor in normal and pathological conditions. J Gen Physiol. 2013;142(2):127-36. CrossRef PubMed PubMedCentral
  96. Ching LL, Williams AJ, Sitsapesan R. Evidence for Ca(2+) activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex. Circ Res. 2000;87(3):201-6. CrossRef PubMed
  98. Terentyev D, Viatchenko-Karpinski S, Gyorke I, Volpe P, Williams SC, Gyorke S. Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: Mechanism for hereditary arrhythmia. Proc Natl Acad Sci U S A. 2003;100(20):11759-64. CrossRef PubMed PubMedCentral
  100. Gyorke S, Stevens SC, Terentyev D. Cardiac calsequestrin: quest inside the SR. J Physiol. 2009;587(Pt 13):3091-4. CrossRef PubMed PubMedCentral
  102. Stern MD. Theory of excitation-contraction coupling in cardiac muscle. Biophys J. 1992;63(2):497-517. CrossRef  
  103. Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K, Marks AR. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res. 2001;88(11):1151-8. CrossRef PubMed
  105. Laver DR, Kong CH, Imtiaz MS, Cannell MB. Termination of calcium-induced calcium release by induction decay: an emergent property of stochastic channel gating and molecular scale architecture. J Mol Cell Cardiol. 2013;54:98-100. CrossRef PubMed
  107. Gillespie D, Fill M. Pernicious attrition and inter-RyR2 CICR current control in cardiac muscle. J Mol Cell Cardiol. 2013;58:53-8. CrossRef PubMed PubMedCentral
  109. Blatter LA. The intricacies of atrial calcium cycling during excitation-contraction coupling. J Gen Physiol. 2017;149(9):857-65. CrossRef PubMed PubMedCentral
  111. Schulson MN, Scriven DR, Fletcher P, Moore ED. Couplons in rat atria form distinct subgroups defined by their molecular partners. J Cell Sci. 2011;124(Pt 7):1167-74. CrossRef PubMed PubMedCentral
  113. Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993;262(5134):740-4. CrossRef PubMed
  115. Blatter LA, Huser J, Rios E. Sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks in cardiac muscle. Proc Natl Acad Sci U S A. 1997;94(8):4176-81. CrossRef PubMed PubMedCentral
  117. Banyasz T, Chen-Izu Y, Balke CW, Izu LT. A new approach to the detection and statistical classification of Ca2+ sparks. Biophys J. 2007;92(12):4458-65. CrossRef PubMed PubMedCentral
  119. Brum G, Gonzalez A, Rengifo J, Shirokova N, Rios E. Fast imaging in two dimensions resolves extensive sources of Ca2+ sparks in frog skeletal muscle. J Physiol. 2000;528(Pt 3):419-33. CrossRef PubMed PubMedCentral
  121. Gonzalez A, Kirsch WG, Shirokova N, Pizarro G, Brum G, Pessah IN, et al. Involvement of multiple intracellular release channels in calcium sparks of skeletal muscle. Proc Natl Acad Sci U S A. 2000;97(8):4380-5. CrossRef PubMed PubMedCentral
  123. Cheng H, Lederer MR, Xiao RP, Gomez AM, Zhou YY, Ziman B, et al. Excitation-contraction coupling in heart: new insights from Ca2+ sparks. Cell Calcium. 1996;20(2):129-40. CrossRef  
  124. Budko AY, Strutynska NA, Okhay IY, Semenykhina OM, Sagach VF. [Ca(2+) accumulation in isolated rat heart mitochondria under maintenance of mitochondrial potential]. Fiziol Zh. 2015;61(6):17-25. [Ukrainian]. CrossRef PubMed
  126. Bassani RA, Bassani JW, Bers DM. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems. J Physiol. 1994;476(2):295-308. CrossRef PubMed PubMedCentral
  128. Jouaville LS, Ichas F, Holmuhamedov EL, Camacho P, Lechleiter JD. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature. 1995;377(6548):438-41. CrossRef PubMed
  130. Shkryl VM, Shirokova N. Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle. J Biol Chem. 2006;281(3):1547-54. CrossRef PubMed
  132. Niggli E. Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. Annu Rev Physiol. 1999;61:311-35. CrossRef PubMed
  134. Santulli G, Nakashima R, Yuan Q, Marks AR. Intracellular calcium release channels: an update. J Physiol. 2017; 595(10):3041-51. CrossRef PubMed PubMedCentral
  136. Domeier TL, Zima AV, Maxwell JT, Huke S, Mignery GA, Blatter LA. IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol. 2008;294(2):H596-604. CrossRef PubMed
  138. Kockskamper J, Zima AV, Roderick HL, Pieske B, Blatter LA, Bootman MD. Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol. 2008;45(2):128-47. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.