Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2013; 59(5): 85-94


The role of NADPH-oxidase in paracrine and autocrine regulation of platelet functional activity

Talanov SA1, Liashenko TI2, Patalakh I2

  1. Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine
  2. O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz59.05.085


Abstract

NADPH-oxidase (NOX) is a novel transmembrane enzyme that appears to have pivotal role in the control of platelet signal pathways. The NOX activity in platelets is controlled by agonist receptors activation, which, in turn are modulated by NOX. This review focuses on participation of NOX in autocrine and paracrine regulation of platelet activation, aggregation secretion, protein synthesis and cell recruitment processes during thrombus formation. Possible involving of NOX in the cell-to-cell communication and coordination in response to trombogenic stimulus is discussed.

Keywords: platelet, NADPH-oxidase, reactive oxygen species, ROS-signaling

References

  1. Ardanaz N., Pagano P.J. Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction . Exp. Biol. Med. 2006. 231, N 3. P.237-251. CrossRef  
  2. Arthur J.F., Gardiner E.E., Kenny D. Platelet receptor redox regulation . Platelets. 2008. 19, N 1. P. 18. CrossRef PubMed
  3.  
  4. Bakdash N., Williams M.S. Spatially distinct production of reactive oxygen species regulates platelet activation . Free Radic. Biol. Med. 2008. 45, N 2. R. 158-166.
  5.  
  6. Bedard K., Krause K.H. The NOXfamily of ROSgenerating NADPH oxidase: physiology and pathophysiology . Physiol. Rev. 2007. 87, N 1. P. 245-313. CrossRef PubMed
  7.  
  8. Begonja A.J., Gambaryan S., Geiger J. Platelet NAD(P) Hoxidase generated ROS production regulates alphaIIbbeta3integrin activation independent of the NO. cGMP pathway . Blood. 2005. 106, N 8. R. 2757-2760.
  9.  
  10. Begonja A.J., Teichmann L., Geiger J. Platelet regulation by NO. cGMP signaling and NAD(P)H oxidasegenerated ROS . Blood Cells, Mol. Dis. 2006. 36, N 2. P. 166-170. CrossRef PubMed
  11.  
  12. Chiarugi P. Src redox regulation: there is more than meets the eye . Mol. Cells. 2008. 26, N 4. P. 329-337. PubMed
  13.  
  14. Chlopicki S., Olszanecki R., Janiszewski M. Functional role of NADPH oxidase in activation of platelets . Antioxid. Redox. Signal. 2004. 6, N 4. R. 691-698.
  15.  
  16. Clutton P., Miermont A., Freedman J.E. Regulation of endogenous reactive oxygen species in platelets can reverse aggregation . Arterioscler. Thromb. Vasc. Biol. 2004. 24, N 1. R. 187-192.
  17.  
  18. Essex D.W. Redox Control of Platelet Function . Antioxid. Redox Signal. 2009. 11, N 5. R. 1191-1225.
  19.  
  20. Essex D.W., Li M., Feinman R.D., Miller A. Platelet surface glutathione reductaselike activity . Blood. 2004. 104, N 5. P. 1383-1385. CrossRef PubMed
  21.  
  22. Freedman J.E. Oxidative stress and platelets . Arterioscler. Thromb. Vask. Biol. 2008. 28. P. 11-16. CrossRef PubMed
  23.  
  24. Groemping Y., Lapouge k., Smerdon S.J., Rittinger K. Molecular basis of phosphorylationinduced activation of NADPH oxidase . Cell. 2003. 113, N 3. P. 343-355. CrossRef  
  25. Irani K., Pham Y., Coleman L.D. et al. Priming of platelet alphaIIbbeta3 by oxidants is associated with tyrosine phosphorylation of beta3 . Arterioscler. Thromb. Vasc. Biol. 1998. 18, N 11. P. 1698-1706. CrossRef PubMed
  26.  
  27. Iuliano L., Colavita A.R., Leo R., Violi F. Oxygen free radicals and platelet activation . Free Radic. Biol. Med. 1997. 22, N 6. P. 999-1006. CrossRef  
  28. Jiang F., Zhang Y., Dusting G. J. NADPH OxidaseMediated Redox Signaling: Roles in Cellular Stress Response, Stress Tolerance, and Tissue Repair . Pharmacol. Rev. 2011. 63, N 1. P. 218-242. CrossRef PubMed
  29.  
  30. Jin S., Zhou F., Katirai F., Li P.L. Lipid Raft Redox Signaling:Molecular Mechanisms in Health and Disease . Antioxid. Redox Signal. 2011. 15, N 4. P. 1043-1083. CrossRef PubMed PubMedCentral
  31.  
  32. Jones D.P. Radicalfree biology of oxidative stress . Am. J. Physiol. Cell Physiol. 2008. 295, N 4. P. C849-C868. CrossRef PubMed PubMedCentral
  33.  
  34. Kamata H., Hirata H. Redox regulation of cellular signaling . Cell. Signal. 1999. 11, N 1. P. 114. CrossRef  
  35. Krötz F., Sohn H., Pohl U. Reactive oxygene species: players in platelets game . Arterioscler. Thromb. Vasc. Biol. 2004. 24, N 11. P. 1988-1996. CrossRef PubMed
  36.  
  37. Krötz F., Sohn H.Y., Gloe T. NAD(P)Hdependent platelet superoxide anion release increases platelet recruitment . blood. 2002. 100, N 3. P. 917-924.
  38.  
  39. Li Z., Delaney M.K., O'Brien K.A., Du X. Signaling during platelet adhesion and activation . Arterioscler. Thromb. Vasc. Biol. 2010. 30, N 12. R. 2341-2349.
  40.  
  41. Li Z., Zhang G., Marjanovic J.A. A platelet secretion pathway mediated by cGMPdependent protein kinase . J. Biol. Chem. 2004. 279, N 41. P. 42469-42475. CrossRef PubMed
  42.  
  43. Lindemann S, Gawaz M. The active platelet: translation and protein synthesis in an anucleate cell . Semin. Thromb. Hemost. 2007. 33, N 2. R.144-150.
  44.  
  45. Mittler R., Vanderauwera S., Suzuki N. et al. ROS signaling: the new wave? . Trends Plant Sci. 2011. 16, N 6. P. 300-309. CrossRef PubMed
  46.  
  47. Nardi M., Feinmark S.J., Hu L. Complementindependent Abinduced peroxide lysis of platelets requires 12lipoxygenase and a platelet NADPH oxidase pathway . J. Clin. Invest. 2004. 113, N 7. P. 973-980. CrossRef PubMed PubMedCentral
  48.  
  49. Naseem K.M, Bruckdorfer K.R. Hydrogen peroxide at low concentrations strongly enhances the inhibitory effect of nitric oxide on platelets . Biochem. J. 1995. 310 (Pt 1). P. 149-153. CrossRef PubMed PubMedCentral
  50.  
  51. Piersma S.R., Broxterman H.J., Kapci M. Proteomics of the TRAPinduced platelet releasate . J. Proteomics. 2009. 72, N 1. R. 91-109.
  52.  
  53. Pignatelli P., Sanguigni V., Lenti L. gp91phoxdependent expression of platelet CD40 ligand . Circulation. 2004. 110, N 10. R. 1326-1329.
  54.  
  55. Principe D.D., Frega G., Savini I. The plasma membrane redox system in human platelet functions and plateletleukocyte interactions . Thromb. Haemost. 2009. 101, N 2. P. 284-289. CrossRef PubMed
  56.  
  57. Salvemini D., Radziszewski W., Mollace V. Diphenylene iodonium, an inhibitor of free radical formation, inhibits platelet aggregation . Eur. J. Pharmacol. 1991. 199, N 1. P. 15-18. CrossRef  
  58. Seno T., Inoue N., Gao D. Involvement of NADH. NADPH oxidase in human platelet ROS production . Thromb. Res. 2001. 103, N 5. P. 399-409. CrossRef  
  59. Stef G., Csiszar A., Xiangmin Z. Inhibition of NAD(P) H oxidase attenuates aggregation of platelets from highrisk cardiac patients with aspirin resistance . Pharmacol. Rep. 2007. 59, N 4. P. 428-436. PubMed
  60.  
  61. Stouffer G.A. and Smyth S.S. Effects of thrombin on interactions between beta3integrins and extracellular matrix in platelets and vascular cells . Arterioscler. Thromb. Vasc. Biol. 2003. 23, N 11. P. 1971-1978. CrossRef PubMed
  62.  
  63. Van Gorp R.M., DamMieras M.C., Hornstra G., Heemskerk J.W Effect of membranepermeable sulfhydryl reagents and depletion of glutathione on calcium mobilisation in human platelets . Biochem. Pharmacol. 1997. 53, N 10. P. 1533-1542. CrossRef  
  64. Winterbourn C.C., Metodiewa D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide . Free Radic. Biol. Med. 1999. 27, N 34. P. 322-328. CrossRef  
  65. Winterbourn C.C., Metodiewa D. The reaction of superoxide with reduced glutathione . Arch. Biochem. Biophys. 1994. 314, N 2. P. 284-290. CrossRef PubMed
  66.  
  67. Zou Z., Chen H., Schmaier A.A. Structurefunction analysis reveals discrete beta3 integrin insideout and outsidein signaling pathways in platelets . Blood. 2007. 109, N 8. P. 3284-3290. CrossRef PubMed
  68.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.