ENDOTHELIAL MONOCYTE-ACTIVATING POLYPEPTIDE-II AND PROEMAP/P43 DIMINISH ISOLATED HEART FUNCTION DISTURBANCES AFTER ISCHEMIA-REPERFUSION
Y.V. Goshovska1, R.A. Fedichkina1, O.I. Korneliuk2, V.F. Sagach1
- Bogomoletz Institute of Physiology, NAS of Ukraine
- Institute of Molecular Biology and Genetics, NAS of Ukraine
DOI: https://doi.org/10.15407/fz64.05.007
Abstract
Endothelial Monocyte-Activating Polypeptide II (EMAPII)
was showed to decrease oxidative stress and restore cNOS
coupling in rat model of genetically determined hypertension.
We hypothesized that EMAPII is able to prevent oxidative
stress induced by ischemia-reperfusion. Wistar rats were pretreated with EMAPII (30mkg/kg) or its precursor proEMAPII/
p43 (10 mkg/kg) injected i.v. 30 min before the experiment.
Isolated hearts were subjected to 20 min total ischemia and 40
min reperfusion. EMAPII as well as p43 greatly diminished
ischemia-reperfusion induced disturbances of heart function
and prevented non-effective oxygen utilization by reperfuzed
myocardium. In particular, in the control group at the 40th min
of reperfusion, the left ventricular pressure was only 43.8%,
while in groups with EMAPII and p43 - 61.5 (P <0.01) and
82 % (P <0.001), respectively. At the 5th min of reperfusion,
the oxygen cost of myocardial work was 9×10-7 mmol O2
min-1 per g of tissue in control which is 5.6 times higher
than that observed before ischemia, while EMAPII and p43
completely prevented an increase of this parameter at reperfusion.
Additionally, p43 and EMAPII prevented the release of
mitochondrial factor from ischemized heart indicating at least
partial inhibition of mitochondrial permeability transition pore
opening. Thus, we have found the cardioprotective effect of
exogenous p43 and EMAPII.
Keywords:
heart; ischemia; cardioprotection; EMAPII; proEMAP/p43; mitochondrial permeability transition pore
References
- Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med. 2018; 117:76-89. doi: 10.1016/j.freeradbiomed.
- Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res. 2014;114(3):524-37. doi: 10.1161/CIRCRESAHA.114.300559.
CrossRef
- Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol. 2008; 294(2):C460-6.
PubMed" id="ref_href_id" target="blank"">CrossRef
- Xu A, Szczepanek K, Maceyka MW, Ross T, Bowler E, Hu Y, Kenny B, Mehfoud C, Desai PN, Baumgarten CM, Chen Q, Lesnefsky EJ. Transient complex I inhibition at the onset of reperfusion by extracellular acidification decreases cardiac injury. Am J Physiol Cell Physiol. 2014;306(12):C1142-53. doi: 10.1152/ajpcell.00241.2013.
CrossRef
- Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S,Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431-435. doi: 10.1038/nature13909.
CrossRef
- Andrienko TN, Pasdois P, Pereira GC, Ovens MJ, Halestrap AP. The role of succinate and ROS in reperfusion injury - A critical appraisal. J Mol Cell Cardiol. 2017;110:1-14. doi:10.1016/j.yjmcc.2017.06.016.
CrossRef
- Chen B, Zhao Q, Ni R, Tang F, Shan L, Cepinskas I, Cepinskas G, Wang W, Schiller PW, Peng T. Inhibition of calpain reduces oxidative stress and attenuates endothelial dysfunction in diabetes. Cardiovasc Diabetol. 2014;13:88. doi: 10.1186/1475-2840-13-88.
CrossRef
- Herr DJ, Baarine M, Aune SE, Li X, Ball LE, Lemasters JJ, Beeson CC, Chou JC, Menick DR.HDAC1 localizes to the mitochondria of cardiac myocytes and contributes to early cardiac reperfusion injury. J Mol Cell Cardiol. 2018;114:309-319. doi: 10.1016/j.yjmcc.2017.12.004.
CrossRef
- Trempolec N, Mu-oz JP, Slobodnyuk K, Marin S, Cascante M, Zorzano A, Nebreda AR. Induction of oxidative metabolism by the p38α/MK2 pathway. Sci Rep. 2017;7(1):11367. doi: 10.1038/s41598-017-11309-7.
CrossRef
- Miura S,Saitoh SI,Kokubun T,Owada T,Yamauchi H, Machii H,Takeishi Y. Mitochondrial-Targeted Antioxidant Maintains Blood Flow, Mitochondrial Function, and Redox Balance in Old Mice Following Prolonged Limb Ischemia. Int J Mol Sci. 2017;18(9). doi: 10.3390/ijms18091897.
CrossRef
- Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, Yan F, Liu X, Yu S, Ji X, Luo Y MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke. 2015;46(2):513-9. doi: 10.1161/STROKEAHA.114.007482.
CrossRef
- Ng HH, Yildiz GS, Ku JM, Miller AA, Woodman OL, Hart JL. Chronic NaHS treatment decreases oxidative stress and improves endothelial function in diabetic mice. Diab Vasc Dis Res. 2017;14(3):246-253. doi:
PubMed" id="ref_href_id" target="blank"">CrossRef
- Askari H, Seifi B, Kadkhodaee M, Sanadgol N, Elshiekh M, Ranjbaran M, Ahghari P. Protective effects of hydrogen sulfide on chronic kidney disease by reducing oxidative stress, inflammation and apoptosis. EXCLI J. 2018;17:14-23. doi: 10.17179/excli2017-711.
- Sahach VF, Shymans'ka TV, Hoshovs'ka IuV. Effects of stimulation and blockade of the synthesis of endogenous hydrogen sulfide at myocardial ischemia-reperfusion. Fiziol Zh. 2013;59(4):8-15. PMID:24175471. [Ukrainian].
PubMed
- Shymans'ka TV, Hoshovs'ka IuV, Semenikhina OM, Sahach VF. Effect of hydrogen sulfide on isolated rat heart reaction under volume load and ischemia-reperfusion. Fiziol Zh. 2012;58(6):57-66. PMID: 23530414. [Ukrainian].
PubMed
- Drachuk K.O., Kotsjuruba A.V., Sagach V.F. Hydrogen sulfide donor, NaHS, recovers constitutive NO synthesis and endothelium-dependent relaxation of isolated aorta in old rats (PART I). Fiziol Zh. 2015; 61(6): 3-10. PMID: 27025039. [Ukrainian].
PubMed" id="ref_href_id" target="blank"">CrossRef
- Dorofeyeva NA, Kotsuruba AV, Mogilnitskaya LA, Malyna AE, Kornelyuk AI, Sagach VF. Endothelial monocyteactivating factor II cancels oxidative stress, constitutive NOS uncoupling and induced violations of cardiac hemodynamics in hypertension (PART II) Fiziol Zh. 2015; 61(3): 11-18. [Ukrainian]. PMID: 26495731.
- Tsai BM, Wang M, Clauss M, Sun P, Meldrum DR. Endothelial monocyte-activating polypeptide II causes NOS-dependent pulmonary artery vasodilation: a novel effect for a proinflammatory cytokine. Am J Physiol Regul Integr Comp Physiol. 2004;287(4):R767-71. DOI:10.1152/ajpregu.00248.2004.
CrossRef
- Quevillon S, Agou F, Robinson JC, Mirande M. The p43 component of the mammalian multi-synthetase complex is likely to be the precursor of the endothelial monocyte-activating polypeptide II cytokine. J Biol Chem. 1997;272:32573-9. PMID: 9405472.
PubMed" id="ref_href_id" target="blank"">CrossRef
- van Horssen R, Eggermont AM, ten Hagen TL Endothelial monocyte-activating polypeptide-II and its functions in (patho)physiological processes. Cytokine Growth Factor Rev. 2006;17(5):339-48. DOI: 10.1016/j. cytogfr.2006.08.001
- Lee SW, Cho BH, Park SG, Kim S. Aminoacyl-tRNA synthetase complexes: beyond translation. J Cell Sci 2004;117:3725-34.
PubMed" id="ref_href_id" target="blank"">CrossRef
- Knies UE, Behrensdorf HA, Mitchell CA, Deutsch U, Risau W, Drexler HC, et al. Regulation of endothelial monocyte-activating polypeptide II release by apoptosis. Proc Natl Acad Sci USA. 1998;95:12322-7. DOI:10.1242/jcs.01342.
CrossRef
- Liu SH, Gottsch JD. Apoptosis induced by a cornealendothelium derived cytokine. Invest Ophthalmol Vis Sci. 1999;40:3152-9. PMID:10586937.
PubMed
- Yamamoto M, Fukushima T, Ueno Y, Hayashi S, Kimura H, Soma G, et al. Clinical significance of the expression of endothelial-monocyte activating polypeptide II (EMAPII) in the treatment of glioblastoma with recombinant mutant human tumor necrosis factor-alpha (TNFSAM2). Anticancer Res 2000;20:4081-6. PMID:11131676.
PubMed
- Wellings RP, Lash GE, Murray JC, Tas M, Ward W, Trew AJ, et al. Endothelial monocyte-activating polypeptide-2 is increased in pregnancy but is not further increased in preeclampsia. J Soc Gynecol Invest 1999;6:142-6. PMID:10376270.
PubMed" id="ref_href_id" target="blank"">CrossRef
- Knies UE, Behrensdorf HA, Mitchell CA, Deutsch U, Risau W, Drexler HC, Clauss M. Regulation of endothelial monocyte-activating polypeptide II release by apoptosis. Proc Natl Acad Sci USA. 1998;95:12322-7. PMID:9770485.
PubMed" id="ref_href_id" target="blank"">CrossRef
- Barnett G, Jakobsen AM, Tas M, Rice K, Carmichael J, Murray JC. Prostate adenocarcinoma cells release the novel proinflammatory polypeptide EMAP-II in response to stress. Cancer Res. 2000;60: 2850-7. PMID: 10850427
PubMed
- Matschurat S, Knies UE, Person V, Fink L, Stoelcker B, Ebenebe C, Behrensdorf HA, Schaper J,Clauss M.. Regulation of EMAP II by hypoxia. Am J Pathol 2003;162:93–103. DOI: 10.1016/S0002-9440(10)63801-1
CrossRef
- Neely J., Liebermeister H., Battersby E. Effect of pressure development on oxygen consumption by isolated heart. Am J Physiol. 1967; 221:804-13. DOI:10.1152/ ajplegacy.1967.212.4.804
- Sagach VF, Shymanskaya TV, Nadtochiy SM. Factor released under heart reperfusion may be themarker of opening of the mitochondrial permeability transition pore. Fiziol Zh. 2003; 49(4): 7-13. PMID:14509922. [Ukrainian].
- Hoshovs'ka IuV, Korkach IuP, Shymans'ka TV, Kotsiuruba AV, Sahach VF. Effects of genipin on nitric oxide synthesis and oxidative stress development in ishemiareperfusion of old rat hearts. Fiziol Zh. 2009;55(6):3-11. PMID:20201383. PMID: 20201383. [Ukrainian].
PubMed
- Nadtochiy SM, Nauduri D, Shimanskaya TV, Sagach VF, Brookes PS. Purine release: a protectivesignaling mechanismof the mitochondrial permeabilitytransition pore in ischemia. Fiziol Zh. 2008; 54(6): 5-14. PMID: 19227234.
PubMed
- Hoshovs'ka IuV, Shymans'ka TV, Rudyk OV, Korkach IuP, Sahach VF. Mitochondria permeability transition as a target for ischemic preconditioning. Fiziol Zh. 2011;57(4):34-45. PMID:22164407. [Ukrainian].
PubMed
|