EFFECTS OF MULTIPOTENT STROMAL CELL TRANSPLANTATION ON MICE IMMUNE SYSTEM UNDER CONDITIONS OF ITS REGENERATION
I.S. Nikolsky1, V.V. Nikolskaya1, D.L. Demchenko1, L.I. Taranukha1, Y.-M.А.Semenova1, T.V.Serebrovska2
- State Institute of Genetic and Regenerative Medicine
National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
- O.O.Bogomoletz Institute of Physiology of the National
Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz64.04.003
Abstract
The effects of thymic multipotent stromal cells (MSC)
transplantation on the regeneration of mice immune system
damaged by cyclophosphamide was investigated. Three
groups of mice were examined: immunized control animals,
immunized mice receiving cyclophosphamide, and immunized
animals receiving cyclophosphamide and MSC. A single
intraperitoneal injection of cyclophosphamide was performed
at a dose of 200 mg / kg. Two hours later, thymic MSCs
(5×104, 0.1 ml) were injected into the retroorbital sinus. One
week after MSC administration the mice of all groups were
immunized with sheep erythrocytes (108), after 4 days a similar
number of cells were re-injected into the hind foot pad, and
the immune system was assessed after 24 hours. It was shown
that transplantation of MSC led to a significant decrease in
granulocyte count (by 25%), hematocrit (by 8.1%) and the
number of reticulocytes (by 71.4%), however, expressed
stimulation of the regenerative activity of the immune system
was registered. The effect of MSC on innate and adaptive
immunity was characterized by a marked increase in the natural
cytotoxicity of splenocytes (by 2.7 times) and the phagocytic
index of peritoneal macrophages (by 72.2%), normalization
of bactericidal activity in the NCT test, and also expressed
by stimulation of antibody response. The obtained results
show that transplantation of thymic MSC to mice with the
regeneration of hemoimunopoiesis after cyclophosphamide
administration can manifest in multidirectional effects:
stimulation of the immune system and delay in the renewal of
granulocyte and erythrocyte germ cells. The data obtained can
be used to develop methods for the targeted regeneration of the
lymphoid component of the immune system, enhancement of
natural immunity and a humoral immune response.
Keywords:
thymus multipotent stromal cells; immune system regeneration; cyclophosphamide heme immunodeficiency.
References
- Lisianyĭ MI. Mesenchymal stem cells and their immunological properties. Fiziol Zh. 2013;59(3):126-34. [Ukrainian].
PubMed
- Nikolskaya EI, Butenko GM. Structural-functional organisation of the bone marrow hematopoietic stem cells niches. Cell and organ transplantology. 2016; 4(1):82-100.
- Block GJ, Ohkouchi S, Fung F, Frenkel J, Gregory C, Pochampally R, et al. Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1 Stem Cells. 2009 Mar; 27(3):670-81. doi: 10.1002/stem.20080742.
CrossRef
- Liubich LD, Lisyany NI. The influence of progenitor neuro- cells supernatant on the lympho- cytes cytotoxic function in rats with glioma. Fiziol Zh. 2015;61(4):63-70. [Ukrainian].
CrossRef
PubMed
- Osada M, Singh VJ, Wu K, Sant'Angelo DB, Pezzano M. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus. PLoS One. 2013 Dec 10; 8(12):e83024. doi: 10.1371/journal. pone.0083024.
- Grushka NG, Pavlovych SI, Bryzgina TM, Sukhina VS, Makogon NV, Yanchiy RI. Genotoxic stress and the pathways of thymus cell death and lymph nodes of mice in conditions of immunocomplex pathology. Fiziol Zh. 2015;61(1):28-34. [Ukrainian].
CrossRef
PubMed
- Xu SF, Yu LM, Fan ZH, Wu Q, Yuan Y, Wei Y, Fang N. Improvement of ginsenoside Rg1 on hematopoietic function in cyclophosphamide-induced myelosuppression mice. Eur J Pharmacol. 2012 Nov 15;695(1-3):7-12. doi:10.1016/j.ejphar.2012.07.050. Epub 2012 Aug 23.
CrossRef
- Prockop DJ, Phinney DG, Bunnell BA. Mesenchymal stem cells: methods and protocols. Humana Press. 2008; 192. [Russian].
CrossRef
- Kim WK, Jung H, Kim DH, Kim EY, Chung JW, Cho YS, et al. Regulation of adipogenic differentiation by LAR tyrosine phosphatase in human mesenchymal stem cells and 3T3-L1 preadipocytes. J Cell Sci. 2009 Nov 15; 122(Pt 22):4160-7. doi: 10.1242/jcs.053009.
CrossRef
- Khaitov RM, Pinegin BV, Yarilin AA Guide to Clinical Immunology. Diagnosis of immune system diseases: a guide for doctors. Moscow: GEOTAR-Media. 2002; 352. [Russian].
- Frimmel G. Immunological methods edited by Frimel G. Moscow: The world. 1987; 472. [Russian].
Dons'koĭ BV, Chernyshov VP, Sirenko VIu, Strelko HV, Osypchuk DV. Effect of hypo- and hyper- accentuated NK cell activity on embryo implantation. Fiziol Zh. 2014;60(1):56-63. [Ukrainian]
CrossRef
PubMed
- Mossman T. Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxicity assay. J Immunol Methods. 1983 Dec 16; 65(1-2):55-63.
CrossRef
- Sugiura H, Sugiura H, Nishida H, Inaba R, Mirbod SM, Iwata H. Effects of different durations of exercise on macrophage functions in mice. J Appl Physiol (1985). 2001 Mar; 90(3):789-94. doi: 10.1152/jappl.2001.90.3.789.
CrossRef
- Telegin L IU. Pharmacogenetics of cyclophosphamide. Moscow:INFRA-M. 2012; 80. [Russian].
- Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 2004 Nov 1; 104(9):2643-5. doi: 10.1182/ blood-2004-02-0526.
- Li TS, Shi H, Wang L, Yan C. Effect of Bone Marrow Mesenchymal Stem Cells on Satellite Cell Proliferation and Apoptosis in Immobilization-Induced Muscle Atrophy in Rats. Med Sci Monit. 2016 Nov 29; 22:4651-60.
CrossRef
PubMed PubMedCentral
Li H, Jiang Y, Jiang X, Guo X, Ning H, Li Y, et al. CCR7 guides migration of mesenchymal stem cell to secondary lymphoid organs: a novel approach to separate GvHD from GvL effect. Stem Cells. 2014; 32:1890-903. doi: 10.1002/ stem.1656
- Strauss G, Westhoff MA, Fischer-Posovszky P, Fulda S, Schanbacher M, Eckhoff SM, Stahnke K, Vahsen N, Kroemer G, Debatin KM. 4-hydroperoxy-cyclophosphamide mediates caspase-independent T-cell apoptosis involving oxidative stress-induced nuclear relocation of mitochondrial apoptogenic factors AIF and EndoG. Cell Death Differ. 2008 Feb;15(2):332-43.
CrossRef
PubMed
- Lapid K, Glait-Santar C, Gur-Cohen S, Canaani J, Kollet O, Lapidot T. Egress and Mobilization of Hematopoietic Stem and Progenitor Cells: A dynamic multi-facet process (December 10, 2012), StemBook, ed. The Stem Cell Research Community, StemBook, doi/10.3824/stembook. 1.91.1, http:.www.stembook.org.
- Jackson MV, Morrison TJ, Doherty DF, McAuley DF, Matthay MA, Kissenpfennig A, et al. Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells. 2016 Aug; 34(8):2210-23. doi: 10.1002/stem.2372.
CrossRef
- Nikolsky IS, Nikolskaya VV, Savinova VO. Influence of thymic multipotent stromal cells intravenous introduction on immune response. Bull Ural Med Acad. 2012; 4: 55-6. [Russian].
|