Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2018; 64(3): 91-99


EFFECT OF MAGNESIUM ON BONE TISSUE REMODELING

I.G. Litovka, V.A. Berezovskii

    O.O.Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz64.03.091

Abstract

In a review of the current literature for the 2000-2017 period, there was presented data on the effect of magnesium on organic and inorganic matrix of bone tissue. These results suggest that magnesium is an important mediator in the formation of bone tissue. It can prevent the premature destruction of bone and promote its recovery. Violation of his balance is one of the etiological factors for the condition of bone tissue.

Keywords: magnesium; bone tissue; remodeling

References

  1. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000; 21: 115–37. CrossRef  
  2. De Francisco AL, Rodriguez M. Magnesium — its role in CKD. Nefrologia. 2013; 33 (3): 389-99.
  3.  
  4. Vormann J. Magnesium: nutrition and metabolism. Mol Aspects Med. 2003; 24:27-37. CrossRef  
  5. Krokhalev AA, Alekseeva LA. Modern concepts of the role of magnesium in the human body and the disturbances of its metabolism. Therap Arch. 1996; 38(10): 9-15. [Russian].
  6.  
  7. Lakhkar NJ, Lee IH, Kim HW, Salih V, Wall IB, Knowles JC. Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliv Rev. 2013; 65 (4):405–20. CrossRef PubMed
  8.  
  9. Wu L, Luthringer BJ, Feyerabend F. Effects of extracellular magnesium on the differentiation and function of human osteoclasts. Acta Biomater. 2014; 10:2843-54. CrossRef PubMed
  10.  
  11. Rude RK. Magnesium deficiency: a cause of heterogeneous disease in humans. J Bone Miner Res. 1998;13:749-58. CrossRef PubMed
  12.  
  13. Hussain A, Bessho K, Takahashi K, et al. Magnesium calcium phosphate as a novel component enhances mechanical/physical properties of gelatin scaffold and osteogenic differentiation of bone marrow mesenchymal stem cells. Tissue Eng Part A. 2012;18:768-74. CrossRef PubMed
  14.  
  15. Kozlovsky AA. Hypokalemia and hypomagnesemia and their correction in children and adolescents. Clin Rract and health. 2013; 2/2:21-36. [Russian].
  16.  
  17. Nieves JW. Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D. Osteoporos. Int. 2013;24:771-86. doi: 10.1007/s00198-012-2214-4. CrossRef  
  18. Torshin IYu, Gromova OA. Molecular mechanisms of magnesium deficiency in undifferentiated connective tissue dysplasia. Ross J. 2008, 2: 62-7. [Russian].
  19.  
  20. Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: Animal and human observations. J Nutr Biochem. 2004;15:710–16. doi: 10.1016/j. jnutbio.2004.08.001. [PubMed] [Cross Ref].
  21.  
  22. Rude RK, Kirchen ME, Gruber HE, Meyer MH, Luck JS, Crawford DL. Magnesium deficiency-induced osteoporosis in the rat: Uncoupling of bone formation and bone resorption. Magnes Res. 1999;12:257–67 [PubMed]. PubMed
  23.  
  24. Rude RK, Gruber HE, Wie LY, Frausto A, Mills BG. Magnesium deficiency: Effect on bone and mineral metabolism in the mouse. Calcif Tiss Int. 2003;72:32–41. doi: 10.1007/s00223-001-1091-1. [PubMed] [Cross Ref]. CrossRef  
  25. Creedon A, Flynn A, Cashman K. The effect of moderately and severely restricted dietary magnesium intakes on bone composition and bone metabolism in the rat. Br J Nutr. 1999;82:63–71. [PubMed]. CrossRef PubMed
  26.  
  27. Rude RK, Singer FR, Gruber HE. Skeletal and hormonal effects of magnesium deficiency. J Am Coll Nutr. 2009. – 28(2); 131-41.
  28.  
  29. Leidi M, Dellera F, Mariotti M, Banfi G, Crapanzano C, Albisetti W, Maier JA. Nitric oxide mediates low magnesium inhibition of osteoblast-like cell proliferation. J Nutr Biochem. 2012;23:1224–29. doi: 10.1016/j. jnutbio.2011.06.016. [PubMed] [Cross Ref].
  30.  
  31. Belluci MM, Schoenmaker T, Rossa-Junior C, Orrico SR, de Vries TJ, Everts V. Magnesium deficiency results in an increased formation of osteoclasts. J Nutr.Biochem. 2013 doi: 10.1016/j.jnutbio.2012.12.008. [PubMed] [Cross Ref]. CrossRef  
  32. Mio K, Carrette O, Maibach HI. et al. Evidence that the serum inhibitor of hyaluronidase may be a member of the inter-alpha-inhibitor family. J Biol Chem. 2000; 275(42): 32413-21. CrossRef PubMed
  33.  
  34. Swaminathan R. Nutritional factors in osteoporosis. Int J Clin.Pract.1999; 53(7): 540-46. PubMed
  35.  
  36. Parlier R, Hioco D, Leblanc R. Metabolism of magnesium and its relation to that of calcium. I. Apropos of a study of magnesium balance in the normal man, in osteopathies and nephropathies. Rev Fr Endocrinol Clin. 1963; 4: 93–135. PubMed
  37.  
  38. Rude RK, Singer FR, Gruber HE. Skeletal and hormonal effects of magnesium deficiency. J Am Coll Nutr. 2009;28:131–41. doi: 10.1080/07315724.2009.10719764. [PubMed] [Cross Ref]. CrossRef  
  39. Castiglioni S, Cazzaniga A, Albisetti W, Maier J. Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions. Nutrients. 2013; 5:3022–33. Published online 2013 Jul 31. doi: 10.3390/ nu5083022.
  40.  
  41. Toba Y, Kajita Y, Masuyama R, et al. Dietary magnesium supplementation affects bone metabolism and dynamic strength of bone in ovariectomized rats. J Nutr. 2000; 130:216–20. CrossRef PubMed
  42.  
  43. Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999; 69 : 727–36. CrossRef PubMed
  44.  
  45. Kim MH, Yeon JY, Choi MK, Bae YJ. Evaluation of magnesium intake and its relation with bone quality in healthy young women. Biol Trace Elem Res. 2011;144:109–17. CrossRef PubMed
  46.  
  47. Carpenter TO, DeLucia MC, Zhang JH, Bejnerowicz G, Tartamella L, Dziura J, Petersen KF, Befroy D, Cohen D. A randomized controlled study of effects of dietary magnesium oxide supplementation on bone mineral content in healthy girls. J Clin Endocrinol Metab. 2006; 91:4866–72. CrossRef PubMed PubMedCentral
  48.  
  49. Ryder K. M., Shorr R. I., Bush A. J., Kritchevsky S. B., Harris T., Stone K., Cauley J., Tylavsky F. A. Magnesium intake from food and supplements is associated with bone mineral density in healthy older white subjects. J Am Geriatr Soc. 2005; 53: 1875–80. CrossRef PubMed
  50.  
  51. Song CH, Barrett-Connor E, Chung JH, Kim SH, Kim KS. Associations of calcium and magnesium in serum and hair with bone mineral density in premenopausal women. Biol Trace Elem Res. 2007;118:1–9. doi: 10.1007/s12011-007- 0011-2. [PubMed] [Cross Ref].
  52.  
  53. Jones G, Riley MD, Dwyer T. Maternal diet during pregnancy is associated with bone mineral density in children: a longitudinal study. Eur J Clin Nutr. 2000; 54 (10): 749–56. CrossRef PubMed
  54.  
  55. Mackie EJ. Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol. 2003; 35:1301-05, doi: 10.1016/S1357-2725(03)00107-9. CrossRef  
  56. Sul YT, Johansson C, Albrektsson T. Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. Int J Prosthodont 2006; 19: 319-28. PubMed
  57.  
  58. He LY, Zhang XM, Liu B, Tian Y, Ma WH. Effect of magnesium ion on human osteoblast activity. Braz J Med Biol Res. 2016;49(7). pii: S0100-879X2016000700604. doi: 10.1590/1414-431X20165257. CrossRef  
  59. Hoffler CE, Moore KE, Kozloff K. Age, gender, and bone lamellae elastic moduli. J of Orthopaed Res. 2000; 18:432-37. CrossRef PubMed
  60.  
  61. Keaveny TM., Morgan EF., Yeh OC. Bone mechanics. in: M. Kutz (Ed.) Biomedical Engineering and Design Handbook. McGraw-Hill, New York; 2009:221–43.
  62.  
  63. Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. 2012;5:i3–i14. doi: 10.1093/ndtplus/sfr163. CrossRef  
  64. Romani AM. Cellular magnesium homeostasis. Arch Biochem Biophys. 2011;512:1–23. CrossRef PubMed PubMedCentral
  65.  
  66. Goytain A, Quamme GA. Functional characterization of human SLC41A1, a Mg2+ transporter with similarity to prokaryotic MgtE Mg2+ transporters. Physiol Genomics. 2005; 21(3): 337-42. CrossRef PubMed
  67.  
  68. Roy ME, Nishimoto SK. Matrix Gla protein binding to hydroxyapatite is dependent on the ionic environment: calcium enhances binding affinity but phosphate and magnesium decrease affinity. Bone. 2002;31:296–302. CrossRef  
  69. Feyerabend F, Witte F, Kammal M, et al. Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation. Tiss Eng. 2006;12: 3545–56. CrossRef PubMed
  70.  
  71. Zhang L, Yang C, Li J. High extracellular magnesium inhibits mineralized matrix deposition and modulates intracellular calcium signaling in human bone marrowderived mesenchymal stem cells. Biochem Biophys Res Commun. 2014; 450:1390–95. CrossRef PubMed
  72.  
  73. Liu YS, Liu YA, Huang CJ, et al. Mechanosensitive TRPM7 mediates shear stress and modulates osteogenic differentiation of mesenchymal stromal cells through Osterix pathway. Sci Rep. 2015; 5:16522. doi: 10.1038/ srep16522.[PMC free article] [PubMed] [Cross Ref].
  74.  
  75. Leidi M, Dellera F, Mariotti M, et al. High magnesium inhibits human osteoblast differentiation in vitro. Magnes Res. 2011;24:1–6. PubMed
  76.  
  77. Nakatani S, Mano H, Ryanghyok IM, et al. Excess magnesium inhibits excess calcium-induced matrixmineralization and production of matrix gla protein (MGP) by ATDC5 cells. Biochem Biophys Res Commun. 2006;348:1157–62. CrossRef PubMed
  78.  
  79. Chubanov V, Waldegger S, Mederos y Schnitzler M. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia // Proc Natl Acad Sci USA. 2004; 101(9):2894-9. CrossRef PubMed PubMedCentral
  80.  
  81. Schlingmann KP., Weber S., Peters M. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet. 2002; 31(2) : 166-70. CrossRef PubMed
  82.  
  83. Wang Z., Hu SY., Lei DL. Effect of chronic stress on PKA and P-CREB expression in hippocampus of rats and the antagonism of antidepressors Zhong Nan Da Xue Xue Material nadiishov do redaktsii 05.12.2017 Bao Yi Xue Ban. Nat Genet. 2006; 31(5): 767-71.
  84.  
  85. Tsao YT, Shih YY, Liu YA, Liu YS, Lee OK. Knockdown of SLC41A1 magnesium transporter promotes mineralization and attenuates magnesium inhibition during osteogenesis of mesenchymal stromal cells. Stem Cell Res Ther. 2017; 8(1):39. doi: 10.1186/s13287-017- 0497-2.
  86.  
  87. Polushkina ES., Shmakov RG. Application of magnesium in obstetrics. Lech doctor. 2010; 11: 54-6. [Russian].
  88.  
  89. Norms of Physiological Needs for Energy and Food Substances for Different Populations of the Russian Federation // Method. the river. MR 2.3.1.2432-08. 3.2.1. Balanced diet. M., 2008. 40 pp. [Russian].
  90.  
  91. Fulgoni VL., Quann EE. National trends in beverage consumption in children from birth to 5 years: analysis of NHANES across three decades. Nutr J. 2012;11(1):92. CrossRef PubMed PubMedCentral
  92.  
  93. Rychkova TI Physiological role of magnesium and the significance of its deficiency in the dysplasia of connective tissue in children. Pediatrics. 2011; 90 (2):114-20. [Russian].
  94.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.