Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2018; 64(3): 70-78


EFFECT OF AQUEOUS COLLOIDAL SOLUTION OF FULLERENE C60 ON HEMATOLOGICAL AND BIOCHEMICAL INDICES OF RAT BLOOD

O.O. Vlasov1,2, G.A. Kovalov1, I.V. Belochkina1, I.A. Iefimova3, B.P. Sandomirsky1

  1. Institute of Problems of Cryobiology and Cryomedicine NAS of Ukraine, Kharkov, Ukraine
  2. V.N. Karazin Kharkiv National University, Ukraine
  3. Kharkiv Regional Clinical Traumatological Hospital, Kharkov, Ukraine
DOI: https://doi.org/10.15407/fz64.03.070

Abstract

The effect of unmodified fullerene C60 aqueous colloidal solution (FASC60) after intraperitoneal administration at a dose of 1 mg/kg, which was used in various concentrations, on hematological parameters, visco-elastic properties of the erythrocyte membrane and the biochemical parameters of blood serum of rats was studied. It was found that FASC60 at concentrations of 34.7 and 173 μmol/l induced moderate anisocytosis: the standard deviation of the relative width of the red blood cell distribution by volume increased by 15 and 12% on day 1 and by 13 and 18% on day 5 respectively. In addition, the sensitivity of erythrocytes to hypotension increased. Thus, on day 1 the level of hemolysis increased by 30 and 60% in 70 mmol/l NaCl solution and by 46 and 60% in 60 mmol/l NaCl solution for dilutions of 34.7 and 173 μmol/l respectively. Administration of FASC60 at a concentration of 173 μmol/l on day 5 caused moderate hemolysis (the hemoglobin content in the blood decreased by 11%, and the absolute amount of erythrocytes decreased by 18%). The use of FASC60 at a concentration of 34.7 μmol/l on day 1 of the experiment was accompanied by transient leukocytosis (36%) with increasing in the content of segmented neutrophils by 60% and increasing in the activity of aspartate aminotransferase and alanine aminotransferase by 91.7 and 97.5% respectively. Thus, the administration of FASC60 has little toxicity, regardless of concentration.

Keywords: water colloidal solution of unmodified fullerene С60 (FASC60); hematological parameters; elastic properties of erythrocyte membrane; biochemical parameters of blood serum; rats

References

  1. Castro E, Hernandez Garcia A, Zavala G, Echegoyen L. Fullerenes in Biology and Medicine. J Mater Chem B. 2017;5(32):6523-35. CrossRef PubMed
  2.  
  3. Prylutskyy YI, Vereshchaka IV, Maznychenko AV et al. C60 fullerene as promising therapeutic agent for correcting and preventing skeletal muscle fatigue. J Nanobiotechnology. 2017;15(1):8. CrossRef PubMed PubMedCentral
  4.  
  5. Nozdrenko DM, Bogutska KI, Prylutskyy YI et al. Impact of C60 fullerene on the dynamics of force-speed changes in soleus muscle of rat at ischemia-reperfusion injury. Fiziol Zh. 2015;61(2):48-59. CrossRef PubMed
  6.  
  7. Franskevych DV, Grynyuk II, Prylutska SV et al. Photocytotoxic effect of C60 fullerene against L1210 leukemic cells is accompanied by enhanced nitric oxide production and p38 MAPK activation. Exp Oncol. 2016 Jun;38(2):89-93. PubMed
  8.  
  9. Mamontova TV, Vesnina LE, Mikityuk MV et al. Fullerene C60 inhibited free radical and destructive processes in connective tissue during adjuvant arthritis in rats. Fiziol Zh. 2015;61(2):80-6. CrossRef PubMed
  10.  
  11. Volkova N, Yukhta M, Pavlovich O, Goltsev A. Application of cryopreserved fibroblast culture with au nanoparticles to treat burns. Nanoscale Res Lett. 2016; 11: 22. CrossRef PubMed PubMedCentral
  12.  
  13. Ha Ye, Katz L, Liljestrand H. Distribution of fullerene nanoparticles between water and solid supported lipid membranes: thermodynamics and effects of membrane composition on distribution environ. Sci Technol. 2015; 49(24): 14546-53. CrossRef PubMed
  14.  
  15. Wang I, Tai L, Lee D. C60 and water-soluble derivatives as antioxidants against radical-initiated lipid peroxidation. J Med Chem. 1999; 42: 4614-20. CrossRef PubMed
  16.  
  17. Piotrovskiy L, Yeropkin M, Yeropkina Y, Dumpis M, Kiselev I. Mechanisms of the biological action of fullerenes – dependence on the aggregate state. Psikhofarmakol Biol Narkol. 2007; 7(2); 1548-54.
  18.  
  19. Andreichenko KS, Prylutska SV, Medynska KO, Bogutska KI, Nurishchenko NE, Prylutskyy YI, et al. Effect of fullerene C60 on ATPase activity and superprecipitation of skeletal muscle actomyosin. Ukr Biokhim Zh. 2013;85(2):20-6.
  20.  
  21. Prylutska SV, Kichmarenko YM, Bogutska KI, Prylutskyy YI. Fullerene C60 and its derivatives as anticancer agents: problems and prospects. Biotechnologia Acta. 2012; 5(3): 9-17.
  22.  
  23. Nielsen G, Roursgaard M, Jensen K, Poulsen S, Larsen S. In vivo biology and toxicology of fullerenes and their derivatives. Basic Clin Pharmacol Toxicol. 2008, 103 (3):197-208. CrossRef PubMed
  24.  
  25. Fujita K, Morimoto Y, Ogami A, Myojyo T, Tanaka I, Shimada M, et al. Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology. 2009;258:47-55. CrossRef PubMed
  26.  
  27. Sayes CM, Marchione AA, Reed KL, Warheit DB. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett. 2007; 7: 2399-2406. CrossRef PubMed
  28.  
  29. Belochkina IV, Ishchenko IO, Prylutska SV, Bogutska KI, Cherepanov VV, Sandomirskiy BP. Effect of S60 fullerene on metabolic and proliferative activity of PKE cell line. The Ukrainian Biochem J. 2014; 86(2): 129-33. CrossRef  
  30. Prylutska SV, Matyshevska OP, Golub AA et al. Study of S60 fullerenes and S60-containing composites cytotoxicity in vitro. Mater Sci Engineer. C. 2007; 27: 1121-4. CrossRef  
  31. Prylutska SV, Rotko DM., Prylutskyy YI, Rybalchenko VK. Toxicity of carbon nanostructures in systems in vitro and in vivo. Suchasni Problemy Toksykolohiyi. 2012; 3-4; 49-57. [Russian].
  32.  
  33. Ritter U, Prylutskyy Yu, Evstigneev MP, Davidenko NA, Cherepanov VV, Senenko AI, et al. Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fullerenes, Nanotubes and Carbon Nanostructures. 2014; 23: 530-4. CrossRef  
  34. Shipelin VA, Arianova EA, Trushina EN, Avrenyeva LI, Batishcheva SY, Cherkashin AV, et al. Toxicological and sanitary characterization of fullerene S60 administered through the rat gastrointestinal tract. Hygiene and Sanitation. 2012; 2: 90-4. [Russian].
  35.  
  36. Wong-Ekkabut J, Baoukina S, Triampo W, et al. Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol. 2008; 3: 363-8. CrossRef PubMed
  37.  
  38. Shpakova NM, Nipot EE, Ishchenko IO, Prylutska SV, Bogutska KI, Cherepanov VV, et al. Effect of S60 fullerene on viscoelastic properties of human erythrocytes membrane. Physiol J. 2014; 60(5): 82-8. [Ukrainian].
  39.  
  40. Semenovich AA, Pereverzev VA, Zinchuk VA, Korotkevich TV. Normal physiology: a textbook. Part 1. Minsk: High School, 2013. [Russian].
  41.  
  42. Baker GL, Gupta A, Clark ML, Valenzuela BR, Staska LM, Harbo SJ, et al. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci. 2008; 101(1): 122-31. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.