INFLUENCE OF CHRONIC HYPOMELATONINEMIA ON CARBOHYDRATE AND LIPID METABOLISM OF RATS KEPT ON WESTERN DIET
O.I. Belikova1, V.S. Cherno1, Yu.D. Frenkel’1, V.O. Kostenko2
- V.O. Sukhomlinsky Mykolayiv National University. Ukraine
- Ukrainian Medical Stomatological Academy, Poltava, Ukraine
DOI: https://doi.org/10.15407/fz64.03.052
Abstract
We studied the effect of hypomelatoninemia induced by
round-the-clock light with an intensity of 1500 lx for 60 days
on carbohydrate and lipid metabolism of white rats kept on
high-calorie carbohydrate-lipid diet (HCCLD, 20 % fructose
solution and the diet). It was found that these conditions reduced the melatonin concentration in the blood serum by
55.6 % compared with the results obtained from the animals
exposed to the round-the clock light only. Herewith, the animals
developed the insulin resistance syndrome, which was
accompanied by more marked manifestations of its characteristic
metabolic symptoms as hyperinsulinemia, dyslipoproteinemia,
hypo-α-lipoproteinemia, hypertrialcylglycerolemia,
and increased visceral fat mass. This condition demonstrated
the development of decompensated lipid peroxidation and a
decrease in the antioxidant potential in the blood of rats, but
without significant changes in the concentration of systemic
inflammation markers (tumor necrosis factor α and ceruloplasmin).
Under these circumstances the formation of secondary
peroxidation products (compounds reacting with thiobarbituric
acid) surpassed the relevant results in the group exposed to
the separate round-the-clock light and in the group kept on
the high-calorie carbohydrate-lipid diet by 49.1 % and 11.9 %
respectively.
Keywords:
insulin resistance syndrome; hypomelatoninemia; high-calorie carbohydrate-lipid diet; carbohydrate and lipid metabolism; systemic inflammatory response
References
- Waterhouse J, Reilly T, Edwards B. The stress of travel. J Sports Sci. 2004 Oct;22(10):946-65.
CrossRef
PubMed
- Kurshakov AA, Saifutdinov RG, Anchikova LI, Valeeva IK, Nikishova TV. Insulin resistance and endothelial dysfunction in metabolic syndrome. Kazan Med J. 2011; 92 (2):173-6. [Russian].
- Rapoport SI, Molchanov AYu, Golichenkov VA, Burlakova OV, Suprunenko ES, Savchenko ES. Metabolic syndrome and melatonin. Klin Med. 2013; (11):8-14.
- Mishchenko TV, Gladkih AI, Poltorak VV, Bondarenko LO. Hypopinealism as a factor of metabolic syndrome development. Endokrynologia. 2015; 20(2):494-500. [Ukrainian].
Cardinali DP, Vigo DE. Melatonin, mitochondria, and the metabolic syndrome. Cell Mol Life Sci. 2017 Aug 17. doi:
- 1007/s00018-017-2611-0.
Peuhkuri K., Sihvola N., Korpela R. Dietary factors and fluctuating levels of melatonin. Food Nutr Res. 2012; 56:
CrossRef
- 3402/fnr.v56i0.17252.
- Hardeland R. Neurobiology, Pathophysiology, and Treatment of Melatonin Deficiency and Dysfunction. Sci World J. 2012; 2012: 640389.
CrossRef
PubMed PubMedCentral
- Peschke E., Bähr I., Mühlbauer E. Melatonin and Pancreatic Islets: Interrelationships between Melatonin, Insulin and Glucagon. Int J Mol Sci. 2013 Apr; 14(4): 6981–7015.
CrossRef
PubMed PubMedCentral
- Talash VV, Kostenko VA. Effect of inhibitors of nuclear factor κb activation upon metabolism and hemocoagulation under modeled metabolic syndrome. Farmakolohiya ta likarsʹka toksykolohiya. 2015;(2):83-9. [Ukrainian].
- Methods of clinical and experimental research in medicine (Ed. IP Kaidashev). – Poltava; 2003. [Ukrainian].
- Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F, Fernandes AA, Cicogna AC, Novelli Filho JL. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007 Jan;41(1):111-9.
CrossRef
PubMed
- Panchal SK, Brown L. Rodent models for metabolic syndrome research. J Biomed Biotechnol. 2011; 2011: 351982.
- Derymedvid LV, Buchtyarova IP, Gorbach TV. Efficiency antioxidants Reksod at experimental metabolic syndrome. Eksperym. i klin. med. 2011;(3):30-5. [Ukrainian].
- Kaidashev IP. NF-kB Activation as a molecular basis of pathological process by metabolic syndrome. Fiziol Zh. 2012;58(1):93-101. [Ukrainian].
PubMed
- Coletta DK, Balas B, Chavez AO, Baig M, Abdul-Ghani M, Kashyap SR, Folli F, Tripathy D, Mandarino LJ, Cornell JE, Defronzo RA, Jenkinson CP. Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo. Am J Physiol Endocrinol Metab. 2008 May;294(5):E910-7.
CrossRef
PubMed PubMedCentral
- Frenkel' Yu, Cherno V. Role of transcription nuclear factor kB in mechanisms impairing oxidative metabolism in rats brain under chronic hypomelatoninemia. Georgian Med News. 2014 Jul-Aug;(232-233):99-102. [Russian].
- Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G. The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol. 2012 Nov;22(11):557-66.
CrossRef
PubMed
- Persichini T, Maio N, di Patti MC, Rizzo G, Toscano S, Colasanti M, Musci G. Interleukin-1β induces ceruloplasmin and ferroportin-1 gene expression via MAP kinases and C/EBPβ, AP-1, and NF-κB activation. Neurosci Lett. 2010 Oct 29;484(2):133-8.
CrossRef
PubMed
- Kutsenko LO, Kaidashev IP. The place of ceruloplasmin among the acute phase proteins as a marker of systemic inflammation. Lab diagn. 2011;(3):59-68. [Russian].
Ambroskina VV, Kriachok TA, Larionov OP, Bratus' VV, Talaieva TV. The presence and characteristics of interrelations between lipid metabolism disorder and systemic inflammation. Fiziol Zh. 2008;54(3):36-46. [Ukrainian]
PubMed
- de Alvaro C, Teruel T, Hernandez R, Lorenzo M. Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a p38 MAPK-dependent manner. J Biol Chem. 2004 Apr 23;279(17):17070-8.
CrossRef
PubMed
- Morgan MJ, Zheng-gang L. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011 Jan; 21(1): 103-15.
CrossRef
PubMed PubMedCentral
- Endogenous mechanisms of cardioprotection as the basis of pathogenetic therapy of heart diseases. (Eds AA Moybenko, VE Dosenko, AN Parkhomenko). Kiev: Naukova dumka; 2008. [Russian].
|