Nanoceria alleviate oxidative and nitrosative stress in salivary glands glutamate-induced obesity rats
L.P. Hordiienko1, T.V. Beregova1, K.S. Neporada2, T.M. Falalyeyeva1, N.M. Zholobak3, O.B. Shcherbakov3, R.V. Bubnov3, M.Ya. Spivak3
- Taras Shevchenko National University of Kyiv, Ukraine
- HSEE of Ukraine “Ukrainian Medical Stomatological Academy”, Poltava, Ukraine
- Zabolotny Institute of Microbiology and Virology, Ukraine
DOI: https://doi.org/10.15407/fz64.02.003
Abstract
The aim was to study the effects of nanoceria on pro / antioxidant balance in the tissues of salivary glands
in glutamate (MSG)-induced obese rats. We included 48 Wistar rats of both genders and divided into four
groups, and conducted comparative assessment of intragastric administration of nanocrystalline cerium
dioxide at a dose of 1 mg/kg at the background of glutamate-induced obesity. We determined the total activity
of NО-synthase, the maintenance of nitrites, the content of TBA-reactive substances, the content of oxidative
modified proteins and catalase activity in the homogenate of salivary glands’ tissues of rats. Intragastric
administration of nanocrystalline cerium dioxide prevents impairment of pro/antioxidant equilibrium in
the tissues of salivary glands of rats on the background of MSG-indused obesity. Intragastric administration
of nanocrystalline cerium dioxide on the background of MSG-indused obesity significantly reduces
the total NO-synthase activity and the nitrate anions content in salivary gland tissues of rats compared to
the group of animals without correction. MSG-induced obesity leads to oxidative stress development in the
salivary glands of rats. Administation of nanoceria contributes to the correction of pathological changes
in salivary glands via restoring pro/antioxidant balance and preventing the activation of NO-ergic system.
Keywords:
nanocrystalline cerium dioxide; obesity; salivary glands; oxidative stress; obesity complications; monosodium glutamate; food additives; animal model.
References
- Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, PlazaDiaz J, Gil A. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Mol Sci. 2016; 17(6). pii: E928.
- WHO: Obesity and overweight: Fact sheet N. 311. http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 31 May 2017.
- Zhang Y, Liu J, Yao J, et al. Obesity: Pathophysiology and Intervention. Nutrients. 2014; 6(11):5153-83.
CrossRef
PubMed PubMedCentral
- Husarova V, Ostatnikova D. Monosodium glutamate toxic effects and their implications for human intake: a review. JMED Research, 2013, Article ID 608765,
- Afifi MM, Abbas AM. Monosodium glutamate versus diet induced obesity in pregnant rats and their offspring. Acta Physiol Hung. 2011 Jun; 98(2):177-88.
CrossRef
PubMed
- Falalieieva TM, Kukhars'kyi VM, Berehova TV. [Effect of long-term monosodium glutamate administration on structure and functional state of the stomach and body weight in rats]. Fiziol Zh. 2010;56(4):102-10. [Ukrainian].
PubMed
- Ashwini R, Priya NK, Nandini DB, Madhushankari GS. Obesity and Oral health a review. J Dental Pract Res. 2013; 1 (2): 30-5.
- Ueda H, Yagi T, Amitani H et al. The roles of salivary secretion, brain-gut peptides, and oral hygiene in obesity. Obes Res Clin Pract. 2013; 7 (5): 321-9.
CrossRef
- Mozaffari MS, Abdelsayed R, Zakhary I, et al. Submandibular gland and caries susceptibility in the obese Zucker rat. J Oral Pathol Med. 2011; 40 (2): 194-200.
CrossRef
PubMed PubMedCentral
- Guare RO, Ciamponi AL, Santos MT. Caries experience and salivary parameters among overweight children and adolescents. Dent. J. 2013; 1: 31-40.
CrossRef
- Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity-associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci. 2013: 14 (5): 10497-538.
CrossRef
PubMed PubMedCentral
- Nelson BC, Johnson ME, Walker M.L, Riley KR, Sims C.M. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants. 2016; 5 (15): 1-21.
CrossRef
- Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011; 194 (1): 7-15.
CrossRef
PubMed PubMedCentral
- Iefimenko OY, Savchenko IO, Falalyeyeva TM, Beregova TV, Zholobak NM, Shcherbakov OB, et al. The influence of nanodisperse cerium dioxide on ontogenetic changes of antioxidant system in the mucosa of the stomach and colon in rats. Fiziol Zh. 2015;61(3):44-50. [Ukrainian].
CrossRef
PubMed
- Kobyliak NM, Falalyeyeva TM, Kuryk OG, Beregova TV, Bodnar PM, Zholobak NM, Shcherbakov OB, Bubnov RV, Spivak MY. Antioxidative effects of cerium dioxide nanoparticles ameliorate age-related male infertility: optimistic results in rats and the review of clinical clues for integrative concept of men health and fertility. EPMA J. 2015;6:12.
CrossRef
PubMed PubMedCentral
- Shcherbakov AB, Zholobak NM, Ivanov VK, Tret' yakov YD, Spivak NY. Nanomaterials based on the nanocrystalline ceria: properties and use perspectives in biology and medicine. Biotechnologia Acta. 2011;4(1):9-28
- Naganuma T, Traversa E. Stability of the Ce3+ valence state in cerium oxide nanoparticle layers. Nanoscale. 2012; 4(16):4950-3.
CrossRef
PubMed
- Wong LL, McGinnis JF. Nanoceria as bona fide catalytic antioxidants in medicine: what we know and what we want to know. Adv Exp Med Biol. 2014; 801 (1): 821-8.
CrossRef
PubMed
- Heckman KL, De Coteau W, Estevez A, Reed KJ, Costanzo W. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano. 2013; 7(12): 10582-96.
CrossRef
PubMed
- Lee SS, Song W, Cho M, Puppala HL, Nguyen P. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano. 2013; 7(11): 9693-703.
CrossRef
PubMed
- Chen S, Hou Y, Cheng G, Zhang C, Wang S. Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress. Biol Trace Elem Res. 2013; 154(1): 156-66.
CrossRef
PubMed
- Beregova TV, Neporada KS, Skrypnyk M, Falalyeyeva TM, Zholobak NM, Shcherbakov OB, Spivak MY, Bubnov RV. Efficacy of nanoceria for periodontal tissues alteration in glutamate-induced obese rats-multidisciplinary considerations for personalized dentistry and prevention. EPMA J. 2017 Mar 14;8(1):43-49.
CrossRef
PubMed PubMedCentral
- Savcheniuk OA, Virchenko OV, Falalyeyeva TM, Beregova TV, Babenko LP, Lazarenko LM, Demchenko OM, Bubnov RV, Spivak MY. The efficacy of probiotics for monosodium glutamate-induced obesity: dietology concerns and opportunities for prevention. EPMA Journal 2014, 5:2.
CrossRef
PubMed PubMedCentral
- Hevel JM. Purification of the inducible murene machrophage nitric oxide synthase. J Biol Chem. 1991; 266(34): 22789-91.
PubMed
- Stalnaya ID, Garishvili TG. Method for determination of malondialdehyde using the thiobarbituric acid. Modern methods in biochemistry. Moscow: Medicine; 1977:66-8. [Russian].
- Dubinina EE, Burmistrov SO. Oxidative modification of proteins of human serum. Method of determining. Questions of medicinal chemistry. 1995; 1: 24-6.[Russian].
- Koroliuk MA, Ivanov LI, Mayorov YH. Method for determining of catalase activity. Laboratornoe delo. 1988;(1): 16-9. [Russian].
PubMed
- Liu GS, Chan EC, Higuchi M, Dusting GJ, Jiang F. Redox mechanisms in regulation of adipocyte differentiation: beyond a general stress response. Cells 1. 2012; 4: 976-93.
CrossRef
PubMed PubMedCentral
- Rocca A, Moscato S, Ronca F, Nitti S, Mattoli V, et al. Pilot in vivo investigation of cerium oxide nanoparticles as a novel anti-obesity pharmaceutical formulation. Nanomedicine. 2015; 11 (7):1725-34.
CrossRef
PubMed
- Christine JW, Joseph JC. Measurement of superoxide dismutase, catalase, and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 2010; 5(1): 51-66.
CrossRef
PubMed PubMedCentral
- Bryant CN, Monique EJ, Marlon LW, Kathryn RR, Christopher MS. Review Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants. 2016; 5(15).
- Zalewska A, Kna’s M, Waszkiewicz N, Klimiuk A, Litwin K, et al. Salivary antioxidants in patients with systemic sclerosis. J. Oral Pathol. Med. 2014; 43: 61-8.
CrossRef
PubMed
- Goldschmidt-Clermont PJ, Moldovan L. Stress, superoxide, and signal transduction. Gene Expression. 1999; 7(4-6): 255-60.
PubMed
- Matsushita K, Morrell CN, Mason RJ, Yamakuchi M, Khanday FA, et al. Hydrogen peroxide regulation of endothelial exocytosis by inhibition of N-ethylmaleimide sensitive factor. The Journal of Cell Biology. 2005; 170 (1): 73-9.
CrossRef
PubMed PubMedCentral
- Abdollahi M, Fooladian F, Emami B, Zafari K, BahreiniMoghadam A. (2003). Protection by sildenafil and theophylline of lead acetate-induced oxidative stress in rat submandibular gland and saliva. Human & Experimental Toxicology. 2003; 22 (11): 587-92.
CrossRef
PubMed
- Takeda I, Kizu Y, Yoshitaka O, Saito I, Yamane GY. Possible role of nitric oxide in radiation-induced salivary gland dysfunction. Radiation Research. 2003; 159 (4): 465-70.
CrossRef
- Kolodziej U, Maciejczyk M, Miasko A, Matczuk J, MKna´ s M, et al. Oxidative modification in the salivary glands of high fat-diet induced insulin resistant rats. Front. Physiol. 2017; 8(20): 1-20.
CrossRef
- Manisundar N, Julius A, A. Amudhan A., et al. Nitric oxide as an inflammatory biomarker in oral and systemic diseases a systematic review. Middle-East Journal of Scientific Research. 2014; 20 (7): 881-6.
- Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb). 2010; 46 (16): 2736-38.
CrossRef
PubMed PubMedCentral
- Xia T, Kovochich M, Liong M, Mädler L. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008; 2(10): 2121-34.
CrossRef
PubMed PubMedCentral
|