Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2018; 64(1): 16-24


EFFECT OF CAPICOR ON THE PARKINSON’S DISEASE PATHOGENIC LINKS

I.M. Mankovska1, K.V. Rosova1, O.O. Gonchar1, V.I. Nosar1, L.V. Bratus1, T.I. Drevitska1, I.D. Glazyrin1, N.V. Karasevich2, I.M. Karaban2

  1. O.O.Bogomoletz Institute of Physiology. National Academy of Sciences of Ukraine, Kiev, Ukraine
  2. D.F. Chebotarev Institute of Gerontology National Academy of Medical Sciences of Ukraine, Kiev, Ukraine
DOI: https://doi.org/10.15407/fz64.01.016


Abstract

It was studied the influence of Capicor (containing Meldonium dihydrate and gamma-butyrobetain dihydrate) on the mitochondrial dysfunction and oxidative stress development in humans with Parkinson’s disease. The aim of the present work was to investigate the pro- and antioxidant balance of blood plasma, the morphofunctional state of blood platelets as well as the Parkin gene expression changes in blood leukocytes of patients with Parkinson’s disease before and after Capicor treatment. It was registered the morphological sings of mitochondrial dysfunction (vacuolization, membrane lysis, septiration) in patients with Parkinson’s disease. After Capicor treatment, there was demonstrated a decrease in these destructive changes as well as restructuring of the platelets mitochondrial apparatus (an increase in the mitochondrial number and area, the mitochondrial biogenesis intensification, a rise of autophagy and fusion of mitochondria). These changes are favoring the growth of the energy power of mitochondria. Under the influence of Capicor, there was demonstrated a reduction in oxidative stress expressiveness (a decrease in blood malon dialdehyde content and a rise in blood glutathione peroxidase activity). After Capicor treatment, there was shown the significant increase in the Parkin gene expression in leukocytes of patients with Parkinson’s disease. This increase account for the intensification of the E3-ubiquitin-ligase-substrates proteasomal degradation which are thought to contribute to neuronal cell death.

Keywords: Parkinson’s disease; mitochondria; oxidative stress; Parkin gene; Capicor

References

  1. Shadrina MI, Slominsky PA. Mitochondrial dysfunction and oxidative damage in the molecular pathology of Parkinson's disease. Mol Biol. 2008;42(5): 809-19. [Russian]. CrossRef
  2. Hudson G. The ageing brain, mitochondria and neurodegeneration. Mitochondria dysfunction in neurodegenerative disorders. Springer Int Publishing. 2016;59-80. CrossRef
  3. Ugryumov MV. The new views on pathogenesis, diagnostics and treatment of Parkinson's disease. Parkinson's disease and motor dysfunction. Moscow, 2011;158-64. [Russian].
  4.  
  5. Talanov S.A., Timoshtshuk S.V., Rudik O.V. Increase of the mitochondrial pore calcium sensitivity in rat heart under chronic deficit of nigrostriatum dopamine. Fiziol. Zh., 2009;55(5): P.3-8. PubMed
  6.  
  7. Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol. 2008;7: 97-109. CrossRef  
  8. Sukhorukov VS. The impairment of the cell energetic metabolism in children. Moscow: Medicine; 2004. [Russian].
  9.  
  10. Bandini F, Cosentino M, Mangiagalli A., et al. Modifications of apoptosis-related protein levels in lymphocytes of patients with Parkinson's disease. The effect of dopaminergic treatment. J Neural Transm. 2004;111(8):1017-30.
  11.  
  12. Scherzer CR, Eklund AC, Morse LJ., et al. Molecular markers of early Parkinson's disease based on gene expression in blood. Proc Nat Acad Sci USA. 2007;104(3):955-60. CrossRef PubMed PubMedCentral
  13.  
  14. Filippova OI, Koloskov AV, Stolitsa AA. Methods for studying the functional activity of platelets. Transfusiology. 2012; 13 (2): 493-514. [Russian].
  15.  
  16. Shimura H, Hattori N, Kubo S., et al. Familial Parkinson's disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet. 2000;25:302-5. CrossRef PubMed
  17.  
  18. Cookson MR. The biochemistry of Parkinson's disease. Annu Rev Biochem. 2005;74:29-52. CrossRef PubMed
  19.  
  20. Rozova KV, Mankovska IM, Gonchar OO, Drevytska TI, Karaban IM, Karasevich NV. The corrective influence of Capicor in experimental parkinsonism and Parkinson's disease. Ukrains'kyi visnyk psykhonevrolohii. 2017;25 (1):102-3. [Ukraine].
  21.  
  22. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992; 55 (3): 181-4. CrossRef PubMed PubMedCentral
  23.  
  24. Karupu VYa. The electron microscopy. K.:High school; 1984. [Russian].
  25.  
  26. Tashke K. Introduction to quantitative cyto-histological morphology. Bucharest: Publishing House of the Academy CRR;1980. [Russian].
  27.  
  28. Stalnaya ID, Garishvili TG. Up to date methods in biochemistry. M;Medicine,1977:66-8.
  29.   Korolyuk MA, Ivanova LI, Maiorova IG., et al. . A method of determining catalase activity. Lab Delo. 1988;(1):16-  
  30. [Russian].
  31.  
  32. Misra H, Fridovich I. The role of superoxide anion in the autooxidation of Epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170-5. PubMed
  33.  
  34. Sudakova YuV., Bakeeva LE, Tsyplenkova VG. Energydependent changes in the ultrastructure of mitochondria of human cardiomyocytes in alcoholic heart disease. Arch. Pathol. 1999; (2): 15-20. [Russian].
  35.  
  36. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana- Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L,Fernandez-Silva P, Enriquez JA, Scorrano L. Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency. Cell. 2013; 155 (1): 160-71. CrossRef PubMed PubMedCentral
  37.  
  38. Mourier A. Mitochondrial dynamics and neurodegeneration. Mitochondria dysfunction in neurodegenerative disorders. Springer Int Publishing. 2016;175-91. CrossRef  
  39. Balaban RS. Modeling mitochondrial function Am. J. Physiol. Cell Physiol. 2006; 291 (6): 1107-13. CrossRef PubMed
  40.  
  41. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728-41. CrossRef PubMed
  42.  
  43. Otten EG, Manni D, Korolchuk VI. Mitochondrial degradation, autophagy and neurodegenerative disease. Mitochondria dysfunction in neurodegenerative disorders. Springer Int Publishing. 2016;255-78. CrossRef  
  44. Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev. 2011;91(4):1161-218. CrossRef PubMed
  45.  
  46. Kuroda Y, Mitsui T, Kunishige M., et al. Parkin enchancences mitochondrial biogenesis in proliferating cells. Hum Mol Genet. 2006;15:883-95. CrossRef PubMed
  47.  
  48. Stichel CC, Zhu XR, Bader V., et al. Mono- and double-mutant mouse models of Parkinson's disease display severe mitochondrial damage. Hum Mol Genet. 2007;20:2377-93. CrossRef PubMed
  49.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.