Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2018; 64(1): 3-10


N.Ya. Martyniuk, V.Yu. Maslov, H.E. Purnyn, S.A. Fedulova, N.S. Veselovsky

    Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine


Changes of electrophysiological characteristics and ongoing activity parameters of the retinal ganglion cells (RGCs) on isolated rat retina were studied 3-4 weeks after streptozotocin (STZ) injection (80 mg/kg). It was shown that following electrophysiological characteristics significantly decreased: density of sodium current on 35 %, -0,84 ± 0,14 nA/pF in control and -0,55 ± 0,08 nA/pF at the STZ-induced diabetes mellitus (DM) and potassium current on 36 %, 1,36 ± 0,16 nA/ pF in control and 0,87 ± 0,14 nА/pF at DM, resting membrane potential on 10 %, -59 ± 1 mV in control and -53 ± 1 mV at DM. The mean frequency of ongoing postsynaptic currents reduced on 72 %, 2,5 ± 0.3 s-1 in control and 0,7 ± 0,1 s-1 at DM. The data suggest that pathological changes of the electrophysiological characteristics in RGCs appear at early stage of experimentally-induced DM.

Keywords: retinal ganglion cells; STZ-induced diabetes; voltage-dependent currents; postsynaptic currents.


  1. World Health Organization. Global status report on noncommunicable diseases. Geneva. 2014.
  3. Kern TS, Barber AJ. Retinal ganglion cells in diabetes, J Physiol. 2008;586(18):4401-8. CrossRef PubMed PubMedCentral
  5. Gastinger MJ, Kunselman AR, Conboy EE, Bronson SK, Barber AJ. Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2 Akita diabetic mice. Invest Ophthalmol Vis Sci. 2008;49(6):2642-53. CrossRef PubMed
  7. Rerup CC. Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol Rev.1970;22(4):485-518. PubMed
  9. Gajdosík A, Gajdosíková A, Stefek M, Navarová J, Hozová R. Streptozotocin-induced experimental diabetes in male Wistar rats. Gen Physiol Biophys. 1999 Oct;18:54-62. PubMed
  11. Cortright RN, Collins HL, Chandler MP, Lemon PW, DiCarlo SE. Diabetes reduces growth and body composition more in male than in female rats. Physiol Behav. 1996;60(5):1233-38. CrossRef
  12. Brown RA, Walsh MF, Ren J. Influence of gender and diabetes on vascular and myocardial contractile function. Endocr Res. 2001 Nov;27(4):399-408. CrossRef PubMed
  14. Ramsey DJ, Ripps H, Qian H. An electrophysiological study of retinal function in the diabetic female rat. Invest Ophthalmol Vis Sci. 2006;47(11):5116-24. CrossRef PubMed
  16. Guenther E, Schmid S, Reiff D. Maturation of intrinsic membrane properties in rat retinalganglion cell. Vision Res.1999;39(15):2477-84. CrossRef  
  17. Kuznetsov KI, Maslov VYu, Fedulova SA, Veselovsky NS. Calcium signals induced by tonic firing in the rat retinal ganglion cells. Fiziol Zh. 2011; 57(1): 3-8. CrossRef  
  18. Martynyuk NYa, Purnyn' EE, Fedulova SA. Effect of a blocker of nicotine acetylcholine receptors on excitatory postsynaptic currents in ganglion cells of the rat retina. Neurophysiol. 2014;46(6):516-20. CrossRef  
  19. O'Brien BJ, Isayama T, Richardson R, Berson DM. Intrinsic physiological properties of cat retinal ganglion cells. J Physiol. 2002;538(3):787-802. CrossRef PubMed PubMedCentral
  21. Kerschensteiner D. Glutamatergic Retinal Waves. Front Neural Circuits. 2016; 10(38). CrossRef  
  22. Farajian R, Pan F, Akopian A, Völgyi B, Bloomfield SA. Masked excitatory crosstalk between the ON and OFF visual pathways in the mammalian retina. J Physiol. 2011;589(18):4473-89. CrossRef PubMed PubMedCentral
  24. Ambati J, Chalam KV, Chawla DK, D'Angio CT, Guillet EG, Rose SJ, et al. Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol. 1997;115(9):1161-66. CrossRef PubMed
  26. Kowluru RA, Engerman RL, Case GL, Kern TS. Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int. 2001;38(5):385-90. CrossRef  
  27. Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Diabetes. 1998;47(5):815-20. CrossRef PubMed
  29. Yu J, Wang L, Weng S, Yang X, Zhang D, Zhong YM. Hyperactivity of ON-type retinal ganglion cells in streptozotocin- induced diabetic mice. PLoS One. 2013;8(9):e76049. CrossRef PubMed PubMedCentral
  31. Ozawa S, Kamiya H, Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Prog Neurobiol. 1998;54(5):581-618. CrossRef  
  32. Stern P, Edwards FA, Sakmann B. Fast and slow components of unitary EPSCs on stellate cells elicited by focal stimulation in slices of rat visual cortex. J Physiol. 1992;449:247-78. CrossRef PubMed PubMedCentral
  34. Protti DA, Gerschenfeld HM, Llano I. GABAergic and glycinergic IPSCs in ganglion cells of rat retinal slices. J Neurosci. 1997;17(16):6075-85. CrossRef PubMed
  36. Brombas A, Kalita-de Croft S, Cooper-Williams EJ, Williams SR. Dendro-dendritic cholinergic excitation controls dendritic spike initiation in retinal ganglion cells. Nature Commun. 2017; 8:15683. CrossRef PubMed PubMedCentral
  38. Kleppe IC, Robinson HP. Determining the activation time course of synaptic AMPA receptors from openings of colocalized NMDA receptors. Biophys J. 1999;77(3): 1418-27. CrossRef

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.