Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2017; 63(5): 62-69


MORPHOLOGICAL PECULIARITIES OF TEMPERATURE AND OSMOTIC RESPONSE OF ERYTHROCYTES IN PRESENCE OF CHLOROPROMAZINE

N.M. Shpakova, E.A. Semionova, I.F. Kovalenko, N.A. Iershova, N.V. Orlova

    Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
DOI: https://doi.org/10.15407/fz63.05.062

Abstract

The effect of chlorpromazine on posthypertonic lysis of erythrocytes was studied with the assessment of the temperature dependence of morphological features of the cells. High antihemolitic activity of chlorpromazine under conditions of posthypertonic shock of erythrocytes was established at 0, but not at 37°C. When chlorpromazine (600 μmol/L) was used, its maximal antihemolytic activity amounted 77%. Erythrocytes survived posthypertoniс shock and chlorpromazine (180 and 600 μmol/L), were subjected to subsequent heating (6, 15, 24, 34 °C). In the presence of 600 μmol/L chlorpromazine, the cells changed their shape (from stomatocytes to spherostomatocytes) and hemolyzed. When 180 μmol/L chlorpromazine was used the red cells with the signs of stomatocytosis acquired the features inherent to echinocyte forms, while the number of cells was not decreased.

Keywords: Human erythrocytes; posthypertonic shock; chlorpromazine; temperature; stomatocyte; spherostomatocyte; echinocyte.

References

  1. Fuller BJ, Lane N, Benson EE. Life in the frozen state. Boca Raton, London, New York, Washington, D.C.: CRC Press; 2004.
  2. Graham JE, Meola DM, Kini NR, Hoffman AM. Comparison of the effects of glycerol, dimethylsulfoxide, and hydroxyethyl starch solutions for cryopreservation of avian red blood cell. Am J Vet Res 2015;76(6):487-93. PubMed PMID: 26000595.
  3. Pakhomova YuS, Kompaniets A, Kuleshova LG. Transformation of erythrocytes during cryopreservation with oxyethylated glycerol derivatives with n = 25 and n = 30 polymerization degree. Probl Cryobiol Cryomed. 2016; 26(4):349-60.
  4. Semionova EA, Yershova NA, Yershov SS, Orlova N, Shpakova NM. Peculiarities of posthypertonic lysis in erythrocytes of several mammals. Probl Cryobiol Cryomed. 2016;26(1):73-83.
  5. Semionova EA, Iershova NA, Orlova NV, Shpakova NM. Hypotonic lysis of mammalian erythrocytes in chlorpromazine presence. EESJ. 2016;(2):7-17.
  6. Yershov SS. Osmotic and temperature sensitivity of mammalian erythrocytes [dissertation]. Kharkiv: Institute for Problems of Cryobiology and Cryomedicine of National Academy of Sciences of Ukraine; 2009. [Russian].
  7. Ficarra S, Russo A, Barreca D, Giunta E, Galtieri A, Tellone E. Short-term effects of chlorpromazine on oxidative stress in erythrocyte functionality: activation of metabolism and membrane perturbation. Oxid Med Cell Longev. 2016 Jul [cited 2016 Aug 8]; 2016:[about 10 p.]. Available from: https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC4992801/
  8. Dmitrieva TB, Krasnov VN, Neznanov NG, Semke VYA, Tiganov AS, editors. Psychiatry: national leadership. M.: GEOTAR-Media, 2011. [Russian].
  9. Fridrihsberg DA. Course of Colloid Chemistry: a textbook for high schools. 3rd ed. St. Petersburg: Chemistry; 1995.
  10. Reinhart WH, Lubszky S, Thöny S, Schulzki T. Interaction of injectable neurotropic drugs with the red cell membrane. Toxicol In Vitro. 2014 Oct;28(7):1274-9. PubMed PMID: 24997296.
  11. SikorskiAF, Białkowska K. Interactions of spectrins with intrinsic membrane domain. Cell Mol Biol Lett. 1996; 1(1): 97-104. PubMed PMID: 9116763.61
  12. Bennett V, Healy J. Organizing the fluid membrane bilayer: diseases linked to spectrin and ankyrin. Trends Mol. Med. 2008; 14(1):28-36. PubMed PMID: 18083066.
  13. Muldrew K. The salting-in hypothesis of post-hypertonic lysis. Cryobiology. 2008;57(3):251-6. PubMed PMID: 18845134.
  14. Bessis M. Red cell shapes: An illustrated classification and its rationale. Nouv Rev Fr Hematol. 1972;12(6):721-46. PubMed PMID: 4268780.
  15. Shpakova NM, Pantaler ER, Bondarenko VA. Antihemolytic effect of chlorpromazine on erythrocytes in hyperosmotic and cold shock. Biokhimiia. 1995; 60(10):1624-31. [Russian]. PubMed PMID: 8555359.
  16. Tsymbal LV, Orlova NV, Shpakova NM. Modification of the structural-functional state of erythrocyte membranes by chlorpromazine Biologicheskie Membrany. 2005; 22(4):327-35. [Russian].
  17. Gordienko EA. Tovstyak VV. Physics of biological membranes: a tutorial. Кiev: Nauk. Dumka; 2009. [Ukrainian].
  18. Gordienko EA, Gordienko YuE, Gordienko OI. The physico-mathematical theory of human erythrocyte hypotonic hemolysis phenomenon. Cryo Letters. 2003 Jul-Aug;24(4):229-44. PubMed PMID: 12955170.
  19. Białkowska K, Bobrowska-Hägerstrand M, Hägerstrand H. Expansion of phosphatidylcholine and phosphatidylserine/phosphatidylcholine monolayers by differently charged amphiphiles. Z Naturforsch C. 2001 Sep-Oct;56(9-10):826-30. PubMed PMID: 11724390.
  20. Oberwagner W, Sauer T, Hermann A, Prohaska R, Müllner EW, Salzer U. Drug-induced endovesiculation of erythrocytes is modulated by the dynamics in the cytoskeleton/membrane interaction. Blood Cells Mol Dis. 2017; 64:15-22. PubMed PMID:28301811.
  21. Shpakova NM, Ershov SS, Nipot OE. To the question about possible correlation between release of К+ ions and development of hemolytic damage of mammalian erythrocytes under hypertonic cryohemolysis. Animal Biology. 2008;10(1-2):164-70. [Ukrainian].

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.