Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 1999; 45(6): 92-104


Free radical processesunder different oxygen supply conditions. the review

T. V. Serebrovskaya, O. S. Safronova, S. K. Gordiy

    A.A. Bogomoletz Institute of Physiology,National Academy of Sciences of Ukraine, Kiev;I. Franko University, Ministry of Education of Ukraine, L’viv


Abstract

Free radical processes (FRP) in mammalian organism are oxygen-depended. The review is devoted to the analysis of pro- and antioxidant processes in mammalian tissues under different oxygen supply conditions. There are described: sources of free radicals; hyperproduction of FRP under hyperoxia and hyperbaria; the role of free radicals in the adaptation to chronic hypoxia (high altitudes, barochamber, chronic heart and lung diseases); production of active oxygen species during the reoxygenation of preliminarily hypoxic tissues; FRP under intermittent hypoxic training; role of FRP in the chemoreception of oxygen. The special attention is paid to three main factors underlined the FR production in hypoxic conditions: the speed of hypoxia increase, the degree of hypoxia and the time of hypoxic exposure.

References

  1. Малышев В.В., Васильева Л.С., Белогоров С.Б., Нефедова Т.В. Адаптация к высот-ной гипоксии позволяет ограничить активацию перекисного окисления липидов привоспалении и стрессе// Биол.эксперим. биологии и медицины. — 1995. — 116,№6. — С.590-593.
  2. Меерсон Ф.З., Архипенко Ю.В., Рожицкая И.И. и др. Противоположное влияниеадаптации к непрерывной и периодической гипоксии на антиоксидантные фермен-ты// Там же. — 1992. — 114, №7. — С.14-15.
  3. Меньшикова Е.Б., Зенков Н.К., Сафина А.Ф. Механизмы развития окислительногостресса при ишемическом и реперфузионном повреждении миокарда// Успехисоврем. биологии. — 1997. — 117, №3. — С. 362-373.
  4. Озереденко В.Г., Федорова Л.П., Рысалиева З.К. и др. Антиоксидантная защитнаясистема в условиях высокогорья// Патол. физиология и эксперим. терапия. —1991. — 1. — С.37-39.
  5. Прайор У. Роль свободнорадикальных реакций в биологических системах. — В кн.:Свободные радикалы в биологии. — М.: Мир, 1979. — Т.1. — С. 13-67.
  6. Сазонтова Е.Г., Архипенко Ю.З., Меерсон Ф.З. Адаптация к периодической гипок-сии и диета с полиненасыщенными жирными кислотами w-3 класса повышают ус-тойчивость Ca2+ — транспорта саркоплазматического ретикулума миокарда ксвободнорадикальному окислению// Биол. эксперим. биологии и медицины. —1995. — 120, №7. — С.42-45.
  7. Салтыкова В.А., Устинова Е.Е., Меерсон Ф.З. Влияние адаптации к гипоксии нарезистентность изолированного предсердия к аритмогенному действию индукторасвободнорадикального окисления// Патол. физиология и эксперим. терапия. —1987. — 5. — С.19-21.
  8. Сейланов А.С., Попов Г.А., Конев В.В. Связь перекисного окисления липидов сдыханием и окислительным фосфорилированием// Журн. эксперим. и клин. ме-дицины. — 1983. — 23, №2. — С. 108-112.
  9. 9. Семенов В.Л., Ярош А.М. Влияние гипоксии на окислительное фосфорилирование иперекисное окисление липидов митохондрий печени крыс при воспалении легких// Укр. биохим. журн. — 1991. — 63, № 2. — С.95-101.
  10. 10. Серебровская З.А., Серебровская Т.В., Афонина Г.Б. Хемилюминесценция, пере-кисное окисление липидов крови и активность нейтрофилов при гипоксической тре-нировке у лиц, подвергшихся воздействию ионизирующего излучения// Радиац.биология и радиоэкология. — 1996. — 36, №3. — С. 394-399.
  11. Acker H., Bolling B., Delpiano M.A. et al. The meaning of H2O2 generation in carotidbody cells for pO2 chemoreception // J. Auton. Nerv. Syst. — 1992. — 41, 1-2. —P.41-51.
  12. Acher H., Xue D. Mechanisms of O2 sensing in the carotid body in comparison withother O2-sensing cells// NIPS. — 1995. — 10. — P. 211-216.
  13. Ahotupa M., Mantyla E., Peltola V., Puntala A., Toivonen H. Pro-oxidant effects ofnormobaric hyperoxia in rat tissues// Acta Physiol. Scand. — 1992. — 145, №2(Jun). — P. 151-157.
  14. Archer S.L., Huang J., Henry T. et al. A redox — based O2 sensor in rat pulmonaryVasculature// Circ. Res. — 1993. — 73, 6. — P. 1100-1112.
  15. Archer S.L., Hampl V., Nelson D.P. et al. Dithionite increases radical formation anddecreases vasoconstriction in the lung. Evidence that dithionite does not mimic alveolarhypoxia// Ibid. — 1995. — 77, 1 Jul. — P.174-181.
  16. Babior B.M. Oxygen — dependent microbial killing by phagocytes// N. Eng. J.Med. — 1978. — 298. — P. 659-668 and 721-725.
  17. Biemond P., van Eijk H.G., Swaak A.J.C. et al. Iron mobilization from ferritin bysuperoxide derived from stimulated polymorphonuclear leukocytes. Possible mechanismin inflammation diseases// J. Clin. Invest. — 1984. — 73. — P. 1576-1579.
  18. Biemond P., Swaak A.J., Beindorff C.M. et al. Superoxide — dependent and -independent mechanisms of iron mobilization from ferritin by xanthine oxidase.Implications for oxygen — free — radical — induсed tissue destruction during ischaemiaand inflammation// Biochem. J. — 1986. — 239. — P. 169-173.
  19. 19. Bolling K.S., Halldorsson A., Allen B.S. et al. Prevention of the hypoxic reoxygenationinjury with the use of a leukocyte — depleting filter// J. Thorac. Cardiovasc. Surgery.— 1997. — 113, 6. — P. 1081-1089; discussion 1089-1090.
  20. 20. Boveris A. Mitochondrial production of superoxide radical and hydrogen peroxide. —In: Tissue hypoxia and ischemia/ Ed. M. Reivich. — New-York.: Plenum Press, 1977. —P. 67-84.
  21. Boveris A., Oshino N., Chance B. The cellular production of Hydrogen peroxide//Biochem. J. — 1972. — 128. — P. 617-630.
  22. Boveris A.,Chance B. Optimal rates of hydrogen peroxide production in hyperbaricoxygen. — In: Alcohol and aldehyde metabolizing systems/ Ed. R. Thurman et al. —New-.York: Acad. Press, 1974. — P.207-214.
  23. Buttke TM. Sandstrom PA. Oxidative stress as a mediator of apoptosis// Immunol.Today. — 1994. — 15, 1. — P. 7-10.
  24. Cadenas E., Boveris A. Enhancement of hydrogen peroxide formation by protophoresand ionophores in antimycin — supplement mitochondria// Biochem. J. — 1980. —188. — P. 31-37.
  25. Carreras MC. Pargament GA. Catz SD. et al. Kinetics of nitric oxide and hydrogenperoxide production and formation of peroxynitrite during the respiratory burst ofhuman neutrophils// FEBS Lett. — 1994. — 341, 1. — Р. 65-68.
  26. Chambers D.E., Parks D.A., Patterson G. et al. Xanthine oxidase as a source of freeradical damage in myocardial ischemia//J. Mol. Cell. Cardiol. — 1985. — 17. —P.145-152.
  27. Chance B., Boveris A., Oshino N. et al. The nature of the catalase intermediate in thebiological function. — In: Oxidases and related redox systems / Ed. I.E. King et al. Baltimore: Univ. Park Press, 1973. — P. 350-353.
  28. Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs//Physiol. Rev. — 1979. — 59, 3. — P. 527-605.
  29. 29. Cherry P.D., Omar H.A., Farrell K.A. et al. Superoxide anion inhibits cGMP assosiate bovine pulmonary relaxation// Amer. J. Physiol. — 1990. — 259. — P.H1056-H1062.
  30. 30. Chunh D.K., Katayama M., Mokashi A. et al. Nitric oxide related inhibition of carotidchemosensory nerve activity in the cat// Resp. Physiol. — 1994. — 97. — P.147-156.
  31. Costa L.E., Llesuy S., Boveris A. Active oxygen species in the liver of rats submitted tochronic hypobaric hypoxia// Amer. J. Physiol. — 1993. — 264 (Cell Physiol. 33). —P. C1395-C1400.
  32. Cross A.R., Henderson L., Jones O.T.J. et al. Involvement of an NADPH oxidase as apO2 sensor protein in the rat carotid body// Biochem. J. — 1990. — 272. — P.743-747.
  33. Daval J.L., Grersi-Egea J.P., Oillet J., Koziel V. A simple method for evaluation ofsuperoxide radical production in neural cells under various conditions: application tohypoxia// J. Cereb. Blood Flow et Met. — 1995. — 15, 1. — P.71-77.
  34. Davies K.J.A. Proteolytic systems as secondary antioxidant defenses. — In: CellularAntioxidant Defense Mechanisms/ Ed. by: C.K. Chow. — Boca Raton, FL: CRC,1988. — P.25-67.
  35. deGroot H., Littauer A., Noll T. Metabolic and pathological aspects of hypoxia inliver cells. — In: Oxygen sensing in tissues/ Ed. Acker H. — Heidelberg: SpringerVerlag, 1988. — P. 49-64.
  36. de Groot H., Littauer A. Hypoxia, reactive oxygen, and cell injury// Free Rad. Biol.Med. — 1989. — 6, 5. — P.541-551.
  37. de Groot H., Noll T. The crucial role of low steady state oxygen partial pressures inhaloalkane free — radical — mediated lipid peroxidation. Possible implications inhaloalkane liver injury// Biochem. Pharmacol. — 1986. — 35. — P. 15-19.
  38. de Groot H., Noll T. The role of physiological oxygen partial pressures in lipidperoxidation. Theoretical considerations and experimental evidence// Chem. Phys.lipids. — 1987. — 44. — P. 209-226.
  39. 39. Della Corte L., Stripe F. The regulation of rat liver xanthine oxidase. Involvement ofthiol group in the convertion of the enzyme activity frome dehydrogenase (type D) int oxidase (type O) and purification of the enzyme// Biochem J. — 1972. — 126. —P.739-745.
  40. 40. Eddy L.J., Stewart J.R., Jones H.P., et al. Free radical — producing enzyme, xanthineoxidase, is undetectable in human hearts// Amer. J. Physiol. — 1987. — 253, Heart22. — P. H709-H711.
  41. Fenton H.J.H. Oxidation of tartaric acid in the presence of iron// J. Chem. Soc. —1894. — 65. — P. 899-903.
  42. Forman H.J., Boveris A. Superoxide radical and hydrogen peroxide in mitochondria. —In. Free radicals in biology/ Ed. Pryor W.A. — New-York: Acad. Press, 1982. —P. 65-90.
  43. Fridovich I. Superoxide dismutase// Adv. Enzymol. — 1974. — 41. — P. 35-94.
  44. Greene E.L., Paller M.S. Calcium and free radicals in hypoxia/ reoxygenation injuryof renal epithelial cells// Amer. J. Physiol. — 1994. — 266, 1. — P.F13-F20.
  45. Grum C.M., Ragsdale R.A., Ketai L.H. et al. Absence of xanthine oxidase or xanthinedehydrogenase in rabbit myocardium// Biochem. Biophys. Res. Commun. — 1986. —141. — P.1140-1108.
  46. Hernandez L.A., Grisham M.B., Twohig B. et al. Role of neutrophils in ischemia —reperfusion — induced microvascular injury// Amer. J. Physiol. — 1987. — 253,HCP 22. — P.H699-H703.
  47. Horakova L., Stols S., Chromikova Z. et al. Mechanisms of hippocampal reoxygenationinjury. Treatment with antioxidants// Neuropharmacology. — 1997. — 36, 2. —P.177-184.
  48. Hortia A. Comparative pharmacology of hydrasine analoques clinically useful asmonoamine oxidase inhibitors// Clin. Med. — 1959. — 80. — P. 590-595.
  49. 49. Iadecola C., Faris P.L., Hartman B.K., Xu X. Localization of NADPH diaphorase inneurones of the rostral ventral medulla: possible role of nitric oxide in central autonomicregulation and oxygen chemoreception// Brain Res. — 1993. — 603, 1. — P.173-179.
  50. 50. Imlay J.A., Linn S. DNA damage and oxygen radical toxicity// Science. — 1988. —240. — P. 1302-1309.
  51. Jones D.P. The role of oxygen concentration in oxidative stress: hypoxic and hyperoxicmodels. — In: Oxidative stress/ Ed. Sies H. — New-York.: Acad. Press, 1985. — P.151-195.
  52. Kessler M., Hoper J., Harrison D.K. et al. Tissue oxygen supply under normal andpathological conditions. — In: Oxygen transport to tissue/ Ed. Lubbers D.W., AckerH. et al. — New-York: Plenum Press, 1984. — P. 69-80.
  53. Khan S., O’Brien P.J. Modulating hypoxia — induced hepatocyte injury by affectingintracellular redox state// Biochim. Biophys. Acta. — 1995. — 1269, 2. — P.153-161.
  54. Klebanoff S.J. Oxygen metabolism and the toxic properties of phagocytes// Ann.Intern. Med. — 1980. — 93. — P. 480-489.
  55. Kretzschmar M.R., Glockner R., Klinger W. Glutathione levels in liver and brain ofnewborn rats: investigations of the influence of hypoxia and reoxygenation on lipidperoxidation// Physiol. Bohemoslov. — 1990. — 39. — P. 257-260.
  56. Kukreja R.C., Hess M.L. The oxygen free radical system: from equations throughmembrane-protein interactions to cardiovascular injury and protection// Cardiovasc.Res. — 1992. — 26. — P. 641-655.
  57. Maly F. E., Schurer-Maly C.S. How and why cells make superoxide: the «phagocytic»NADPH oxidase// NIPS. — 1995. — 10. — P.233-238.
  58. McCord J.M. Free radicals and inflammation: Protection of synovial fluid by superoxidedismutase// Science. — 1974. — 185. — P. 529-531.
  59. 59. McCord J.M. Oxygen free radicals in postischemic tissue injury// N. Eng. J. Med. —1985. — 312. — P.159-163.
  60. 60. McCord J.M. Oxygen — derived radicals: A link between reperfusion injury andinflammation// Fed. Proc. — 1987. — 46. — P.2402-2406.
  61. McCord J.M. Free radicals and myocardial ischemia: overview and outlook// FreeRad. Biol. Med. — 1988. — 4, 1. — P.9-14.
  62. Michiels C., Arnould T., Houbion A., Remacle J. Human umbilical vein endothelialcells submitted to hypoxia — reoxygenation in vitro: implication of free radicals, xanthineoxidase, and energy deficiency// J. Cell. Physiol. — 1992. — 153, 1. — P.53-61.
  63. Minyailenko T.D., Pozharov V.P., Seredenko M.M. Severe hypoxia activates lipidperoxidation in the rat brain// Chem. Phys. Lipids. — 1990. — 55. — P. 25-28.
  64. Mokashi A., Lahiri S. Aortic and carotid body chemoreception in prolonged hyperoxiain the cat// Resp. Physiol. — 1991. — 86, 2. — P. 233-243.
  65. Murrel G.A.C., Francis M.J.O., Bromley L. Modulation of fibroblast proliferation byoxygen free radicales// Biochem. J. — 1990. — 265. — P. 659-665.
  66. Nakanishi K., Tajima F., Nakamura A. et al. Effects of hypobaric hypoxia on antioxidantenzymes in rats// J. Physiol. — 1995. — 489, 3. — P.869-876.
  67. Noseworthy J., Karnovsky M.L. Role of peroxide in the stimulation of the hexosemonophosphate shunt phagocytosis by polymorphonuclear leukocytes// Enzime. —1972. — 13. — P. 203-210.
  68. Oshio N., Jamieson D., Chance B. The properties of hydrogen peroxide productionunder hyperoxic and hypoxic conditions of perfused rat liver// Biochem. J. — 1975. —146. — P.53-65.
  69. 69. Paine A.J. Exited states of oxygen in biology// Biochem. Pharm. — 1978. — 27. —P.1805-1813.
  70. 70. Parks D.A., Granger D.N. Xantine oxidase: Biochemistry, distribution and physiology// Acta Physiol. Scand. — 1986. — 126, Suppl 548. — P.87-99.
  71. Petrone W.F., English D.K., Wong K. Free radicals and inflammation: Superoxide —dependent activation of a neutrophil chemoatactic factor in plasma// Proc. Natl.Acad. Sci. USA. — 1980. — 77. — 1159-1163.
  72. Prabhakar N.R., Kumar G.K., Chang C.G. et al. Nitric oxide in the sensory functionof the carotid body// Brain Res. — 1993. — 625. — P.16-22.
  73. Quaife R.A., Kohmoto O., Barry W.H. Mechanisms of reoxygenation injury in culturedventricular myocytes// Circulation. — 1991. — 83, 2. — P.566-577.
  74. Roche E., Romero-Alvira D. Role of oxygen free radicals in altitude — related disorders// Med. Hypotheses. — 1994. — 42, 2 (Feb.). — P. 105-109.
  75. Rosenbaum D.M., Kalberg J., Kessler J.A. Superoxide dismutase ameliorates neuronaldeath from hypoxia in culture// Stroke. — 1994. — 25, 4. — P.857-862.
  76. Rymsa B., Wang J.-F., de Groot H. O2–. release by activated Kupffer cells uponhypoxia — reoxygenation// Am. J. Physiol. — 1991. — 261, 24. — P.G602-G607.
  77. Sakai H. Takeguchi N. A GTP-binding protein inhibits a gastric housekeeping chloridechannel via intracellular production of superoxide// J. Biol. Chem. — 1994. — 269,38 (Sep 23). — P. 23426-23430.
  78. Serebrovskaya T.V., Krasiuk A.N., Guseva S.A. et al. Respiratory reactivity and theimmune defence during adaptation to high altitudes system in humans residing in radiationcontaminated areas// Hypoxia Med. J. — 1994. — 3. — P.22-24.
  79. 79. Serebrovskaya T., Serebrovskaya Z., Afonina G., Minyailenko T. Effect of intermittenthypoxic training on human respiration, free radical processes, and immune system. —In: High altitude medicine/ Ed. by G. Ueda et al. — Shinshu University Press, Japan,1992. — P.77-82.
  80. 80. Singal P.K., Kapur N., Dhillon K.S. et al. Role of free radicals in catecholamine —induced cardiomyopathy// Can. J. Physiol. Pharmacol. — 1982. — 60. — P. 1390-1397.
  81. Skulachev V.P. Why are mitochondria involved in apoptosis? Permeability transitionpores and apoptosis as selective mechanisms to eliminate superoxide-producingmitochondria and cell// FEBS Let. — 1996. — 397, 1. — P. 7-10.
  82. Smith D.R., Stone D., Darley-Usmar V.M. Stimulation of mitochondrial oxygenconsumption in isolated cardiomyocytes after hypoxia — reoxygenation// Free Rad.Res. — 1996. — 24, 3. — P.159-166.
  83. Southorn P.A., Powis G. Free radicals in medicine. I. Chemical nature and biologicalreactions// Mayo. Clin. Proc. — 1988. — 63. — 381-389.
  84. Sullivan S.J., Oberley T.D., Roberts R.J., Spitz D.R. A stable O2-resistant cell line:role of lipid peroxidation byproducts in O2-mediated injury// Amer. J. Physiol. —1992. — 262, 6. — P.L748-L756.
  85. Turrens J.F., Boveris A. Generation of superoxide anion by the NADH dehydrogenaseof bovine heart mitochondria// Biochem. J. — 1980. — 191. — P. 421-427.
  86. Turrens J.F., Freeman B.A., Levitt J.G., Crapo J.D. The effect of hyperoxia onsuperoxide production by lung submitochondrial particles// Arch. Biochem. Biophys.— 1982. — 217. — P. 401-410.
  87. Turrens J.F., Freeman B.A., Crapo J.D. Hyperoxia increases hydrogen peroxide formationby lung mitochondria and microsomes// Ibid. — 1982a. — 217. — P. 411-419.
  88. Turrens J.F., Alexandre A., Leninger A.L. Ubisemiquinone is the electron donor forsuperoxide formation by complex III of heart mitochondria// Ibid. — 1985. — 237.— P. 408-414.
  89. 89. Turrehs J.F., Beconi M., Barilla J. et al. Mitochondrial generation of oxygen radicalsduring reoxygenation of ischemic tissues// Free Rad. Res. Comms. — 1991. — 12-13. — P.681-689.
  90. 90. Ueno M., Brookins J., Beckmann B.S., Fischer J.W. Effects of reactive oxygenmetabolites on erythropoietin production in renal carcinoma cells// Biochem. Biophys.Res. Commun. — 1988. — 154. — P.773-780.
  91. 91. Yoshikana T.Y., Furukawa Y. Wakamatsu Y. et al. Experimental hypoxia and lipidperoxide in rats// Biochem. Med. — 1982. — 27. — P. 207-213.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2018.