Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2017; 63(5): 3-12


The effects of multipotent mesenchymal stromal cells on mouse brain slices at their co-culture in an in vitro model of periventricular leukomalacia

O. Tsupykov1,2, I. Lushnikova1, A. Ustymenko2, V. Kyryk2, Y. Nikandrova1, M. Patseva1, K. Yatsenko1, G. Butenko2, G. Skibo1,2

  1. Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kyiv
  2. State Institute of Genetic and Regenerative Medicine National Academy of Medical Sciences of Ukraine, Kyiv.
DOI: https://doi.org/10.15407/fz63.05.003

Abstract

Multipotent mesenchymal stromal cells (MMSCs) demonstrated a measurable therapeutic effect following transplantation into animal models of periventricular leukomalacia (PVL), brain white-matter degeneration resulting from hypoxic-ischemic incidents and/or inflammation. However, the mechanisms by which transplanted MMSCs promote cell survival and/or functional recovery remain indeterminate. In this work we used organotypic brain slices for PVL model in vitro (PVLmiv) subjecting cultures to oxygen-glucose deprivation (OGD) and endotoxin lipopolysaccharide (LPS). This approach allowed us to simulate important pathogenic factors both responsible for PVL, hypoxic-ischemic component and inflammation. Based on the cell viability and the glial reaction, we evaluated distant effects of MMSCs on brain slices with PVLmiv in the non-contact co-culture. Cell viability was assessed by the measurement of cytoplasmic enzyme lactate dehydrogenase (LDH) released into the culture medium. Glial reaction in the periventricular regions of slices was analyzed immunochistochemically using specific antibodies to glial markers of oligodendrocytes, astrocytes and microglia (Rip, GFAP and Iba-1, respectively). We showed that the PVLmiv resulted in a significant release of the cytosolic enzyme LDH into medium demonstrating substantial cell damage. A decrease of Rip-immunoreactivity indicated deterioration within oligodenrocytic population of cells, while an increase in GFAP and Iba-1 immunoreactivity reflected pronounced astro- and microgliosis. The presence of MMSCs in the co-culture diminished PVLmiv effects improving cell viability, preventing degradation of oligodendocytes and extensive astro- and microgliosis in brain slices. Our data suggest that protective capacity of MMSCs can be executed distantly most likely via released biomodulatory compounds.

Keywords: periventricular leukomalacia; brain slice culture; oxygen-glucose deprivation; lipopolysaccharide; multipotent mesenchymal stromal cells.

References

  1. Blumenthal I. Periventricular leukomalacia: a review. Eur J Pediatr. 2004; 163 (8): 435-42. CrossRef PubMed
  2.  
  3. Khwaja O, Volpe JJ. Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed. 2008; 93 (2): F153-161.
  4.  
  5. Gano D, Andersen SK, Partridge JC, et al. Diminished white matter injury over time in a cohort of premature newborns. J Pediatr. 2015; 166 (1): 39-43. CrossRef PubMed PubMedCentral
  6.  
  7. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009; 8 (1): 110-24. CrossRef  
  8. Borghesi A, Cova C, Gazzolo D, et al. Stem cell therapy for neonatal diseases associated with preterm birth. J Clin Neonatol. 2013; 2 (1): 1-7. CrossRef PubMed PubMedCentral
  9.  
  10. Chang YS, Ahn SY, Sung S, et al. Stem cell therapy for neonatal disorders: prospects and challenges. Yonsei Med J. 2017; 58 (2): 266- 71. CrossRef PubMed PubMedCentral
  11.  
  12. Syed FI, Couriel DR, Frame D, et al. Central nervous system complications of hematopoietic stem cell transplant. Hematol Oncol Clin North Am. 2016; 30 (4): 887-98. CrossRef PubMed
  13.  
  14. Vadori M, Denaro L, D'Avella D, et al. Indications and prospects of neural transplantation for chronic neurological diseases. Curr Opin Organ Transplant. 2016; 21 (5): 490-96. CrossRef PubMed
  15.  
  16. Rustad KC, Gurtner GC. Mesenchymal stem cells home to sites of injury and inflammation. Adv Wound Care (New Rochelle). 2012; 1 (4): 147-52. CrossRef PubMed PubMedCentral
  17.  
  18. Tsupykov OM, Kyryk VM, Ustymenko AM, et al. Effect of transplantation of adipose-derived multipotent mesenchymal stromal cells on the nervous tissue and behavioral responses in a mouse model of periventricular leukomalacia. Cell and Organ Transplantology. 2015; 3 (1): 68-73. CrossRef  
  19. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapu. 2006; 8 (4): 315-17. CrossRef PubMed
  20.  
  21. Zachar L, Bačenková D, Rosocha J. Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. J Inflamm Res. 2016; 9: 231-40. CrossRef PubMed PubMedCentral
  22.  
  23. Vu Q, Xie K, Eckert M, et al. Meta-analysis of preclinical studies of mesenchymal stromal cells for ischemic stroke. Neurology. 2014; 82: 1277-86. CrossRef PubMed PubMedCentral
  24.  
  25. Tsupykov OM, Lushnikova IV, Nikandrova YA, et al. A novel model of periventricular leukomalacia on mouse organotypic brain slice culture. Cell and Organ Transplantology. 2016; 4 (2): 188-93. CrossRef  
  26. Morin-Brureau MM, De Bock F, Lerner-Natoli M. Organotypic brain slices: a model to study the neurovascular unit micro-environment in epilepsies. Fluids Barriers CNS. 2013; 10 (1): 11. CrossRef PubMed PubMedCentral
  27.  
  28. Wilhelmi E, Schöder UH, Benabdallah A, et al. Organotypic brain slice cultures from adult rats: approaches for a prolonged culture time. Altern Lab Anim. 2002; 30 (3): 275-83. PubMed
  29.  
  30. Humpel C. Organotypic brain slice cultures: a review. Neuroscience. 2015; 305: 86-98. doi: 10.1016/j.neuroscience.2015.07.086. CrossRef  
  31. Deng W, Pleasure J, Pleasure D. Progress in periventricular leukomalacia. Arch Neurol. 2008; 65 (10): 1291-295. CrossRef PubMed PubMedCentral
  32.  
  33. Verkhratsky A, Parpura V, Pekna M, et al. Glia in the pathogenesis of neurodegenerative diseases. Biochem Soc Trans. 2014; 42 (5): 1291-1301. CrossRef PubMed
  34.  
  35. Gualtierotti R, Guarnaccia L, Beretta M, et al. Modulation of neuroinflammation in the central nervous system: role of chemokines and sphingolipids. Adv Ther. 2017; 34 (2): 396-420. CrossRef PubMed
  36.  
  37. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006; 147 (Suppl 1): S232-40. CrossRef PubMed PubMedCentral
  38.  
  39. Pekny M, Pekna M. Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol. 2004; 204: 428-37. CrossRef PubMed
  40.  
  41. Pivneva TA, Tsupykov OM, Pilipenko MN, et al. Structural modifications of astrocytes in the hippocampus after experimental cerebral ischemia in gerbils. Neurophysiology. 2005; 37 (5): 359-64. CrossRef  
  42. Chen X, Katakowski M, Li Y, et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res. 2002; 69: 687-91. CrossRef PubMed
  43.  
  44. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000; 61: 364-70. CrossRef  
  45. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006; 98: 1076-84. CrossRef PubMed
  46.  
  47. Marconi S, Castiglione G, Turano E, et al. Human adiposederived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng Part A. 2012; 18: 1264-72. CrossRef PubMed
  48.  
  49. Rivera FJ, Aigner L. Adult mesenchymal stem cell therapy for myelin repair in multiple sclerosis. Biol Res. 2012; 45: 257-68. CrossRef PubMed
  50.  
  51. Wagner W, Roderburg C, Wein F, et al. Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells. 2007; 25: 2638-47. CrossRef PubMed
  52.  
  53. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008; 8: 726-36. CrossRef PubMed
  54.  
  55. Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: A new strategy for immunosuppression? Trends Immunol. 2007; 28: 219-26. CrossRef PubMed
  56.  
  57. Zhang J, Li Y, Zheng X, et al. Bone marrow stromal cells protect oligodendrocytes from oxygen-glucose deprivation injury. J Neurosci Res. 2008; 86: 1501-10. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2018.