Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2017; 63(4): 48-55


EFFECT OF AGMATINE ON ACTIN POLYMERIZATION DYNAMICS IN WGA-STIMULATED LEUKOCYTES UNDER DIABETES MELLITUS IN RATS

I.V. Brodyak, I.I. Bila, N.O. Sybirna

    Ivan Franko National University of Lviv, Ukraine
DOI: https://doi.org/10.15407/fz63.04.048

Abstract

We examined the effect of agmatine on the aggregation ability of white blood cells induced by sialоspecific lectin of wheat germ (WGA) and the process of polymerization of actin cytoskeleton of leukocytes in normal conditions and under conditions of experimental diabetes mellitus (DM) after 0.5, 1 and 3 min of preincubation of these cells with the WGA. Our studies revealed that agmatine administration to animals with DM leading to a 2.7- and 3.2-fold increase of the aggregate size and aggregation velocity of leukocytes, respectively, compared to diabetic rats who did not receive this polyamine injections. The achieved results can testify to the increase of sialoglycoconjugates and N-acetyl-D-glucosaminecontaining glycans on leukocyte surface. The leukocytes of animals with DM introduced on the background of agmatine insertion that were activated by WGA-stimulatory signals contain more polymerized actin in comparison with the cells of control animals on the background of this polyamine insertion as with leukocytes of animals with DM. Our data suggest that under conditions of DM the agmatine insertion makes the recovery of affinity binding of complementary ligands with sialoglycoconjugates with subsequent intracellular transduction of lectin-induced signal which causes the reorganization of the actin cytoskeleton in leukocytes.

Keywords: polymerised actin; WGA-induced aggregation; sialic acid; leukocytes; agmatine; experimental diabetes mellitus.

References

  1. Badr G, Bashandy S, Ebaid H, Mohany M, Sayed D. Vitamin C supplementation reconstitutes polyfunctional T cellsin streptozotocin-induced diabetic rats. Eur J Nutr. 2012;51:623-33. CrossRef PubMed
  2.  
  3. Lehuen A, Diana J, Zaccone P, Cooke A. Immune cell crosstalk in type 1 diabetes. Nature Rev Immun. 2010;10:501-13. doi:10.1038/nri2787. CrossRef  
  4. Ma J, Hart GW. Protein O-GlcNAcylation in diabetes and diabetic complications. Expert Rev Proteomics. 2013; 10(4): 365-80. CrossRef PubMed PubMedCentral
  5. Ferents IV, Brodyak IV, Lyuta MYa, Burda V A, Gavrylyshyn GS, Sybirna NO. Effect of agmatine on the blood system parameters of rats under the condition of experimental diabetes mellitus. Studia Biologica. 2012;6(3):65-72. [Ukrainian].
  6.  
  7. Hwang SL, Liu IM, Tzeng TF, Cheng JT. Activation of imidazoline receptors in adrenal gland to lower plasma glucose in streptozotocin-induced diabetic rats. Diabetologia. 2005;48(4):767-75. CrossRef PubMed
  8.  
  9. Piletz JE, Aricioglu F, Cheng J-T, Fairbanks CA, Gilad VH, Haenisch B, et al. Agmatine: clinical applications after 100 years in translation. Drug Discov Today. 2013;18(17- 18):880-893.
  10.  
  11. Lee C-L, Chiu PCN, Pang P-C, Chu IK, Lee K-F, Koistinen R, et al. Glycosylation Failure Extends to Glycoproteins in Gestational Diabetes Mellitus. Diabetes. 2011;60:909-17. CrossRef PubMed PubMedCentral
  12.  
  13. Gloster TM, Vocadlo DJ. Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. Nature Chem Biol. 2012;8:683-94. CrossRef PubMed
  14.  
  15. Liu K, Liu HY, Ye W, Jiang JH, Xu X. The initial investigation of the expression of glycosyltransferases in the retina of streptomycin diabetic rats. Zhonghua Yan Ke Za Zhi. 2010;46(7):580-4. PubMed
  16.  
  17. Sybirna NO, Shevtsova a?, Ushakova GO, Brodyak IV, Pismenetzka ?Y. Fundamentals of glycobiology. Monograph; Lviv: Ivan Franko National University of Lviv; 2015. [Ukrainian].
  18.  
  19. Mocsai A, Walzog B, Lowell CA. Intracellular signalling during neutrophil recruitment. Cardiovasc Res. 2015; 107(3):373-85. CrossRef PubMed PubMedCentral
  20.  
  21. Scott DW, Patel RP. Endothelial heterogeneity and adhesion molecules N-glycosylation: Implications in leukocyte trafficking in inflammation. Glycobiology. 2013;23(6):622-33. CrossRef PubMed
  22.  
  23. Vestweber D. How leukocytes cross the vascular endothelium. Nature. 2015;15:692-704. CrossRef  
  24. Green CE, Pearson DN, Camphausen RT, Staunton DE, Simon SI. Shear-dependent capping of L-selectin and P-selectin glycoprotein ligand 1 by E-selectin signals activation of high-avidity 2-integrin on neutrophils. J Immunol. 2004;172:7780-90. CrossRef PubMed
  25.  
  26. Oliveira S, Rosowski EE, Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse. Nature. 2016;16:378-91. CrossRef  
  27. Luo J, Xu T, Wang X, Ba X, Feng X, Deepak V, et al. PI3K is involved in L-selectin- and PSGL-1-mediated neutrophil rolling on E-selectin via F-actin redistribution and assembly. J Cell Biochem. 2010;110(4):910-9. CrossRef PubMed
  28.  
  29. Fenteany G, Glogauer M. Cytoskeletal remodeling in leukocyte function. Curr Opin Hematol. 2003;11:15-24. CrossRef  
  30. Alonso-Lebrero JL, Serrador JM, Domínguez-Jiménez C, Barreiro O, Luque A, del Pozo MA, et al. Polarization and interaction of adhesion molecules P-selectin glycoprotein ligand 1 and intercellular adhesion molecule 3 with moesin and ezrin in myeloid cells. Blood. 2000;95(7):2413-9. PubMed
  31.  
  32. Lin W-L, Guu S-Y, Tsai C-C, Prakash E, Viswaraman M, Chen H-B, et al. Derivation of cinnamon blocks leukocyte attachment by interacting with sialosides. PLoS ONE. 2015; 10(6):e0130389. CrossRef PubMed PubMedCentral
  33.  
  34. Lapovets LE, Lutsyk BD. Handbook of Laboratory Immunology, Lviv, 2002. [Ukrainian].
  35.  
  36. Ferents I, Brodyak I, Lyuta M, Klymyshyn N, Burda V, Sybirna N. Sialylation status of leukocyte cell-surface glycoconjugates in streptozotocin-induced diabetic rats and after treatment with agmatine. Curr Issues Pharmacy and Med Scien. 2013;26(4):390-2. CrossRef
  37. Brodyak IV, Bila II, Sybirna NO. Influence of WGAstimulatory signals on actin polymerization in leukocytes of streptozotocin-induced diabetic rats. Visnyk of Lviv University. Biol ser. 2016; 73:35-40. [Ukrainian].
  38.  
  39. Carulli G, Mattii L, Azzarà A, Brizzi S, Galimberti S, Zucca A, et al. Actin polymerization in neutrophils from donors of peripheral blood stem cells: divergent effects of glycosylated and nonglycosylated recombinant human granulocyte colony-stimulating factor. Am J Hematol. 2006;81(5):318-23. CrossRef PubMed
  40.  
  41. Brodyak IV, Bila II, Overchuk M, Sybirna NO. Effect of agmatine on actin polymerization in leukocytes of streptozotocin-induced diabetic rats. Studia Biologica. 2014;8(3-4):17-30.
  42.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.