Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2017; 63(3): 80-89


MILD TRAUMATIC BRAIN INJURY: GENERAL CHARACTERISTICS, NEURODEGENERATIVE CONSEQUENSES AND MODELING

Y.Y. Zabenko, A.V. Atamas, T.A. Pivneva

    O.O. Bogomoletz Institute of Physiology of the NAN of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz63.03.080

Abstract

The issue of repetitive mild traumatic brain injury (TBI) gets greater attention due to the increase of data on its neurodegenerative consequences (chronic traumatic encephalopathy, Alzheimer’s disease, Parkinson’s disease). The main risk factors of repetitive mild TBI are contact sports like soccer, football, box, hockey, etc as well as participance in military events. Standard life-time methods of diagnostics don’t allow to determine the effects of repetitive mild TBI on the tissue level. For this reason, experimental studies are necessary for this kind of mechanical brain injury. In addition, due to insufficient knowledge on rmTBI pathophysiology in human there remains need in effective treatments. The review presents the general characteristics of rmTBI, pathophysiology data based on experimental research, the types of models in laboratory animals, in particular, the examples of how neurodegenerative diseases after repetitive mild TBI were reproduced in transgenic models.

Keywords: repetitive mild traumatic brain injury; neurodegenerative diseases; experimental modeling.

References

    Basic Information about Traumatic Brain Injury and Concussion [Internet]. 2016 Jan 22. Available from: http:.www.cdc.gov/traumaticbraininjury/basics.html  
  1. Centers for Disease Control and Prevention (CDC), National Center for Injury Prevention and Control. Report to Congress on mild traumatic brain injury in the United States: steps to prevent a serious public health problem. Atlanta (GA): Centers for Disease Control and Prevention; 2003.
  2.  
  3. Barth J, Freeman JR, Broshek DK. Mild Head Injury. In: Ramachandran VS, editor. Encyclopedia of Human Brain. San Diego: Academic Press; 2002. CrossRef  
  4. Diseases and Conditions: Traumatic Brain Injury [Internet]. 2014 May 15. Available from: http:.www. mayoclinic.org/diseases-conditions/traumatic-braininjury/ basics/causes/con-20029302.
  5.  
  6. McCrory P, Meeuwisse W, Johnston K, Dvorak J, Aubry M, Molloy M, Cantu R. Consensus statement on Concussion in Sport 3rd International Conference on Concussion in Sport held in Zurich, November 2008. Clin J Sport Med. 2009;19(3):185–200. CrossRef PubMed
  7.  
  8. Belanger HG, Curtiss G, Demery JA, Lebowitz BK, Vanderploeg RD. Factors moderating neuropsychological outcomes following mild traumatic brain injury: A metaanalysis. J Int Neuropsychol Soc. 2005;11:215–27. CrossRef PubMed
  9.  
  10. Lundin A, de Boussard C, Edman G, Borg J. Symptoms and disability until 3 months after mild TBI. Brain Inj. 2006;20(8):799–806. CrossRef PubMed
  11.  
  12. Daneshvar DH, Riley DO, Nowinski CJ, McKee AC, Stern RA, Cantu RC. Long-term consequences: effects on normal development profile after concussion. Phys Med Rehabil Clin N Am. 2011;22(4):683–700. CrossRef PubMed PubMedCentral
  13.  
  14. McKee AC, Daneshvar DH, Alvarez VE, Stein TD. The neuropathology of sport. Acta Neuropathol. 2014;127(1):29–51. CrossRef PubMed PubMedCentral
  15.  
  16. Stern RA, Riley DO, Daneshvar DH, Nowinski CJ, Cantu RC, McKee AC. Long-term Consequences of Repetitive Brain Trauma: Chronic Traumatic Encephalopathy. PM R. 2011;3:460–7. CrossRef PubMed
  17.  
  18. Davis GA, Iverson GL, Guskiewicz KM, Ptito a, Johnston KM. Contributions of neuroimaging, balance testing, electrophysiology and blood markers to the assessment of sport-related concussion. Br J Sports Med. 2009;43:36–45. CrossRef PubMed
  19.  
  20. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68(7):709–35. CrossRef PubMed PubMedCentral
  21.  
  22. Avila J, Lucas JJ, Perez M, Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiol Rev. 2004;84(2):361–84. CrossRef PubMed
  23.  
  24. Gavett BE, Stern RA, McKee AC. Chronic Traumatic Encephalopathy: A Potential Late Effect of Sport-Related Concussive and Subconcussive Head Trauma. Clin Sports Med. 2011;30(1):179–88. CrossRef PubMed PubMedCentral
  25.  
  26. Blennow K, Hardy J, Zetterberg H. The Neuropathology and Neurobiology of Traumatic Brain Injury. Neuron. 2012;76(5):886–99. CrossRef PubMed
  27.  
  28. Smith DH, Johnson VE, Stewart W. Chronic neuropathologies of single and repetitive TBI : substrates of dementia? Nat Rev Neurol. 2013;9:211–221. CrossRef PubMed PubMedCentral
  29.  
  30. Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Cantu RC, Randolph C, Jordan BD. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery. 2005;57(4):719–26. CrossRef PubMed
  31.  
  32. Gourley MM, Valovich McLeod TC, Bay RC. Awareness and Recognition of Concussion by Youth Athletes and Their Parents. Athl Train Sport Heal Care. 2010;2(5):208–18. CrossRef  
  33. Kirschen MP, Tsou A, Nelson SB, Russell JA, Larriviere D, Kirschen MP, et al. Legal and ethical implications in the evaluation and management of sports-related concussion. Neurol. 2014;83(4):352–8. CrossRef PubMed
  34.  
  35. Kutcher JS, McCrory P, Davis G, Ptito A, Meeuwisse WH, Broglio SP. What evidence exists for new strategies or technologies in the diagnosis of sports concussion and assessment of recovery? Br J Sports Med. 2013;47(5):299–303. CrossRef PubMed
  36.  
  37. Comper P, Bisschop SM, Carnide N, Tricco A. A systematic review of treatments for mild traumatic brain injury. Brain Inj. 2005;19(11):863–80. CrossRef PubMed
  38.  
  39. Meaney DF, Smith DH. Biomechanics of concussion. Clin Sports Med. 2011;30(1):19–31. CrossRef PubMed PubMedCentral
  40.  
  41. Zhang L, Bae J, Hardy WN, Monson KL, Manley GT, Goldsmith W, Yang KH, King AI. Computational study of the contribution of the vasculature on the dynamic response of the brain. Stapp Car Crash J. 2002;46:145–64. PubMed
  42.  
  43. Wallis RA, Panizzon KL, Girard JM. Traumatic neuroprotection with inhibitors of nitric oxide and ADPribosylation. Brain Research. 1996;710:169–77. CrossRef  
  44. Klinicheskoe rukovodstvo po cherepno-mozgovoi trav- me. Prakticheskoe posobie v 3-h tomah. (Red. a. N. Konovalov, L. B. Lihterman, a. a. Potapov). Moskva: antidor, 2002. [Clinical manual of head injury, 2002. (Eds Konovalov AN, Likhterman LB, Potapov AA). Moscow: Antidor (in Russian)].
  45.  
  46. LaPlaca MC, Simon CM, Prado GR, Cullen DK. CNS injury biomechanics and experimental models. Prog Brain Res. 2007;161:13–26. CrossRef  
  47. Greve MW, Zink BJ. Pathophysiology of Traumatic Brain Injury. Mt Sinai J Med. 2009;76:97–104. CrossRef PubMed
  48.  
  49. Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab. 2004;24(2):133–50. CrossRef PubMed
  50.  
  51. Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14(2):128–42. CrossRef PubMed PubMedCentral
  52.  
  53. Raghupathi R. Cell death mechanisms following traumatic brain injury. Brain Pathol. 2004;14(2):215–22. CrossRef PubMed
  54.  
  55. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99(1):4–9. CrossRef PubMed
  56.  
  57. Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurotherapeutics. 2010;7(4):366–77. CrossRef PubMed PubMedCentral
  58.  
  59. Core NB, Clinic SC. Chronic gliosis and behavioral deficits in mice following repetitive mild traumatic brain injury. J Neurosurg. 2014;121:1342–50. CrossRef PubMed
  60.  
  61. Zetterberg H, Smith DH, Blennow K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol. 2013;9(4):201–10. CrossRef PubMed PubMedCentral
  62.  
  63. Fawcett, J. W. and R. A. Asher. The glial scar and central nervous system repair. Brain Res Bull. 1999;49(6): 377–91. CrossRef  
  64. Pannese E. Neurocytology: Fine Structure of Neurons, Nerve Processes, and Neuroglial Cells. 2nd ed. Switzerland: Springer; 2015. CrossRef  
  65. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ, Hempstead BL, Littman DR, Gan WB. Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. Cell. 2013;7:1596–609. CrossRef PubMed PubMedCentral
  66.  
  67. Loane DJ, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp Neurol. 2016;3:316–27. CrossRef PubMed PubMedCentral
  68.  
  69. Cantu RC. Chronic traumatic encephalopathy in the National Football League. Neurosurgery. 2007;61(2):223–5. CrossRef PubMed
  70.  
  71. Jordan B. Medical Aspects of Boxing. 1st ed. New York: CRC Press; 1992.
  72.  
  73. Turner RC, Lucke-Wold BP, Robson MJ, Omalu BI, Petraglia AL, Bailes JE. Repetitive traumatic brain injury and development of chronic traumatic encephalopathy: a potential role for biomarkers in diagnosis, prognosis, and treatment? Front Neurol. 2013;3:1–11. CrossRef PubMed PubMedCentral
  74.  
  75. Mitsis EM, Riggio S, Kostakoglu L, Dickstein DL, Machac J, Delman B, Goldstein M, Jennings D, Antonio ED, Martin J, Naidich TP, Aloysi A, Fernandez C, Seiby J, DeKosky ST, Elder GA, Marek K, Gordon W, Hof PR, Sano M, Gandy S. Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury. Transl Psychiatry. 2014;4:1–8. CrossRef PubMed PubMedCentral
  76.  
  77. Croall ID, Cowie CJA, Peel A, Wood J, Aribisala BS, Mitchell P, Mendelow AD, Smith FE, Millar D, Kelly T, Blamire AM. White matter correlates of cognitive dysfunction after mild traumatic brain injury. Neurology. 2014;83(6):1–8. CrossRef PubMed PubMedCentral
  78.  
  79. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer's disease. Lancet. 2011;377 (9770): 1019–31. CrossRef  
  80. McKee AC, Robinson ME. Military-related traumatic brain injury and neurodegeneration. Alzheimers Dement. 2014;10(3):242–53. CrossRef PubMed PubMedCentral
  81.  
  82. Tang BL. Neuronal protein trafficking associated with Alzheimer disease. Cell Adh Migr. 2009;3(1):118–28. CrossRef PubMed PubMedCentral
  83.  
  84. Johnson VE, Smith DH. Traumatic brain injury and amyloid-β pathology: a link to Alzheimer's disease? Nat Rev Neurosci. 2010;11(5):361–70. CrossRef  
  85. Gardner RC, Burke JF, Nettiksimmons J, Goldman S, Tanner CM, Yaffe K. Traumatic Brain Injury in Later Life Increases Risk for Parkinson Disease. Ann Neurol. 2015;1–9. CrossRef  
  86. Kristman VL, Marras C, Hincapie CA, Cancelliere C, Soklaridis S, Li A, Borg J, Geijerstam JL, Cassidy JD. Systematic Review of the Risk of Parkinson's Disease After Mild Traumatic Brain Injury: Results of the International Collaboration on Mild Traumatic Brain Injury Prognosis. Arch Phys Med Rehabil. 2014;95:238–44. CrossRef PubMed
  87.  
  88. Sullivan HG, Martinez J, Becker DP, Miller JD, Griffith R, Wist AO. Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg. 1976; 45(5):521–34. CrossRef PubMed
  89.  
  90. Raghupathi R, Margulies SS. Traumatic axonal injury after closed head injury in the neonatal pig. J Neurotrauma. 2002;19(7):843–53. CrossRef PubMed
  91.  
  92. Ghabriel MN, Zhu C, Reilly PL, Blumbergs PC, Manavis J, Finnie JW. Toxin-induced vasogenic cerebral oedema in a rat model. Acta Neurochir Suppl. 2000;76:231–6. CrossRef  
  93. Laurer HL, Meaney DF, Margulies SS, McIntosh TK. Modeling Brain Injury/Trauma. In: Ramachandran VS, editor. Encyclopedia of Human Brain. San Diego: Academic Press; 2002. CrossRef  
  94. Kabadi SV, Hilton GD, Stoica BA, Zapple DN, Faden AI. Fluid-percussion-induced traumatic brain injury model in rats. Nat Protoc. 2010;5(9):1552–63. CrossRef PubMed PubMedCentral
  95.  
  96. Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological and Rehabilitational Aspects. Gainsville, FL: CRC Press; 2015.
  97.  
  98. Chen J, Xiu X-M, Xu ZC, Zhang JH, editors. Animal Models of Acute Neurological Injuries. Totowa, NJ: Humana Press; 2009.
  99.  
  100. Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res. 1981;211(1):67–77. CrossRef  
  101. Marmarou A, Montasser A, Foda AE, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg. 1994;112(2):291–300. CrossRef PubMed
  102.  
  103. Foda MA, Marmarou A. A new model of diffuse brain injury in rats. Part II: Morphological characterization. J Neurosurg. 1994;80:301–13. CrossRef PubMed
  104.  
  105. Cernak I, Noble-Haeusslein LJ. Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Sereb Blood Flow Metab. 2010;30:255–66. CrossRef PubMed PubMedCentral
  106.  
  107. Wang Z, Sun L, Yang Z, Leng H, Jiang J, Yu H, Gu J, Li Z. Development of serial bio-shock tubes and their application. Chin Med J (Engl). 1998;111(2):109–13.
  108.  
  109. Saljo A, Hamberger A. Intracranial sound pressure levels during impulse noise exposure. Paper presented at: 7th International Neurotrauma Symposium; 2004 Sept 12–16; Adelaide, Australia.
  110.  
  111. Kane MJ, Angoa-Perez M, Briggs DI, Viano DC, Kreipke CW, Kuhn DM. A mouse model of human repetitive mild traumatic brain injury. J Neurosci Methods. 2012;203(1):41–9. CrossRef PubMed PubMedCentral
  112.  
  113. Kunihiro U, Laurer H, McIntosh T, Pratico D, Martinez D, Leight S, Lee VMY, Trojanowski JQ. Repetitive Mild Brain Trauma Accelerates Aβ Deposition, Lipid Peroxidation, and Cognitive Impairment in a Transgenic Mouse Model of Alzheimer Amyloidosis. J Neurosci. 2002;22(2):446–54.
  114.  
  115. Ando K, Leroy K, Héraud C, Yilmaz Z, Authelet M, Suain V, Decker RD, Brion JP. Accelerated human mutant tau aggregation by knocking out murine tau in a transgenic mouse model. Am J Pathol. 2011;178(2):803–16. CrossRef PubMed PubMedCentral
  116.  
  117. Ojo J-O, Mouzon B, Greenberg MB, Bachmeier C, Mullan M, Crawford F. Repetitive mild traumatic brain injury augments tau pathology and glial activation in aged hTau mice. J Neuropathol Exp Neurol. 2013;72(2):137–51. CrossRef PubMed
  118.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.