Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2017; 63(3): 68-79


EFFECTIVE SCARLESS WOUND HEALING MOLECULAR MARKERS

А.S. Dranitsina, O.V. Taburets, K.O. Dvorshchenko, D.M. Grebinyk, T.V. Beregova, L.I. Ostapchenko

    Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko Kyiv National University
DOI: https://doi.org/10.15407/fz63.03.068


Abstract

The adverse physiological and psychological effects of scars are broad, and there are currently no reliable treatments to prevent scarring. In contrast to adult wounds, early gestation fetal skin wounds repair rapidly and in the absence of scar formation. This intrinsic ability of fetal skin requires biochemical signals, which start at the cellular level and lead to secretion of transforming factors and expression of receptors, and specific markers that promote wound healing without scar formation. Despite extensive investigation, the mechanisms and molecular pathways of wound healing still need to be elucidated to achieve a complete understanding of this remodeling system. For some time, it has been known that significant differences exist among the extracellular matrix, inflammatory response, cellular mediators, and gene expression profiles of fetal and postnatal wounds. The aim of this paper is to discuss the main molecular markers involved in scarless skin wound healing, their respective mechanisms of action as well as problems and perspectives of scarring treatment.

Keywords: fetal; adult skin; wound; molecular markers; healing; treatment.

References

  1. Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review. Int J Burn Trauma. 2012; 2(1):18–28. PubMed PubMedCentral
  2.  
  3. Helmo F R, Machado J R, de Oliveira Guimarães C S, de Paula Antunes Teixeira V, dos Reis M A, Corrêa R R M. Fetal wound healing biomarkers. Disease Markers. 2013; 35(6):939–44. CrossRef PubMed PubMedCentral
  4.  
  5. Pastar I, Stojadinovic O, Yin NC., Ramirez H, Nusbaum AG., Sawaya A, Patel SB., Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in Wound Healing: A Comprehensive Review. Adv in wound care. 2014; 3(7):445–64. CrossRef PubMed PubMedCentral
  6.  
  7. Vereschaka VV. Physical, mechanical and chemical properties of the skin in healthy all ages and people with symptoms of senile flabbiness facial skin: clinical and morphological parallels research methodology. Dermatol and Venereol. 2008; 1 (39): 20–33. [Ukrainian].
  8.  
  9. Vereshchaka VV. Etiology and pathogenesis of senile face and sagging skin its structural mechanisms of change in modern man Caucasoid type / VV Vereshchaka. Science opinion, 2008.–481 p. [Ukrainian].
  10.  
  11. Barrett J.L, Michael TL, Lorenz HP. Scarless fetal wound healing: a basic science review. Plast Reconstr Surg. 2010; 126(4):1172–80. CrossRef PubMed PubMedCentral
  12.  
  13. Ehrlich HP, Kelley SF. Hypertrophic Scar: An interruption in the remodelling of repair- a laser Doppler blood flow study. Plast Reconstr Surg. 1992; 90:993–8. CrossRef  
  14. Reish RG, Eriksson E. Scars: a review of emerging and currently available therapies. Plast Reconstr Surg. 2008; 122:1068–78. CrossRef PubMed
  15.  
  16. Wang J, Dodd C, Shankowsky HA, Sctt PG, Tredget EE. Deep dermal fibroblasts contribute to hypertrophic scarring. Lab Invest. 2008; 88:1278–90. CrossRef PubMed
  17.  
  18. Madden JW, Peacock EE. Studies on the biology of collagen during wound healing: Dynamic metabolism of scar collagen and remodeling of dermal wounds. Ann Surg. 1971; 174:511–20. CrossRef  
  19. Colwell AS, Phan TT, Kong W, et al. Hypertrophic scar fibroblasts have increased connective tissue growth factor expression after transforming growth factor-beta stimulation. Plast Reconstr Surg. 2005; 116:1387–90. CrossRef PubMed
  20.  
  21. Wilgus TA, Bergdall VK, Tober KL, Hill KJ, Mitra S, Flavahan NA, Oberyszyn TM. The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. Am J Pathol. 2004; 165(3):753–61. CrossRef  
  22. Matthew PC, Martins VLC, O'Toole EA. Metalloproteinases and Wound Healing. Adv in wound care. 2015; 4(4):225–34. CrossRef PubMed PubMedCentral
  23.  
  24. Rowlatt U. Intrauterine healing in a 20-week human fetus. Virchows Arch. 1979; 381:353–36. CrossRef  
  25. Rendl M, Lewis L, Fuchs E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 2005; 3:1910–24. CrossRef PubMed PubMedCentral
  26.  
  27. Beanes SR, Dang C, Soo C, Lorenz HP. Ontogenetic transition in the fetal wound extracellular matrix correlates with scar formation. Wound Repair Regen. 2001; 9–151.
  28.  
  29. Wagers AJ, Christensen JL, Weissman IL. Cell fate determination from stem cells. Gene Ther. 2002; 9:606–12. CrossRef PubMed
  30.  
  31. Coolen NA, Schouten KC, Boekema BK, Middelkoop E, Ulrich MM. Wound healing in a fetal, adult, and scar tissue model: a comparative study.Wound Repair and Regen. 2010; 18(3):291–301. CrossRef PubMed
  32.  
  33. Longaker MT, Whitby DJ, Ferguson MW, Lorenz HP, Harrison MR, Adzick NS. Adult skin wounds in the fetal environment heal with scar formation. Ann Surg. 1994; 219:65–72. CrossRef PubMed PubMedCentral
  34.  
  35. Beanes SR, Hu FY, Soo C, Dang CM, Urata M, Ting K, Atkinson JB, Benhaim P, Hedrick MH, Lorenz HP. Confocal microscopic analysis of scarless repair in the fetal rat: Defining the transition. Plast Reconstr Surg. 2002; 109:160–70. CrossRef PubMed
  36.  
  37. Kennedy CI, Diegelmann RF, Haynes JH, Yager DR. Proinflammatory cytokines differentially regulate hyaluronan synthase isoforms in fetal and adult fibroblasts. J Pediatr Surg. 2000; 35:874–879. CrossRef PubMed
  38.  
  39. Mast BA, Diegelmann RF, Krummel TM, Cohen IK. Hyaluronic acid modulates proliferation, collagen and protein synthesis of cultured fetal fibroblasts. Matrix. 1993; 13:441–446. CrossRef  
  40. Lorenz HP, Soo C, Beanes SR. Differential expression of matrix metalloproteinases and their tissue-derived inhibitors in scarless fetal wound healing. Surg Forum. 2001:397–401.
  41.  
  42. Chen W, Fu X, Ge S, Sun T, Sheng Z. Differentialexpression of matrix metalloproteinases and tissue-derived inhibitors of metalloproteinase in fetal and adult skins. Int J Biochem and Cell Biology. 2007; 39(5):997–1005. CrossRef PubMed
  43.  
  44. McCallion RL, Ferguson MWJ, Clark RAF. Fetal wound healing and the development of anti-scarring therapies for adult wound healing in The Molecular and Cellular Biology of Wound Repair. 2nd ed., Ed Clarke RAF. New York: Plenum Press; 1996–600 p.
  45.  
  46. Cass DL, Bullard KM, Sylvester KG, Yang EY, Sheppard D, Herlyn M, Adzick NS. Epidermal integrin expression is upregulated rapidly in human fetal wound repair. J Pediatric Surgery. 1998; 33(2):312–6. CrossRef  
  47. Lin C-H, Waters JM, Powell BC, Arkell RM, Cowin AJ. Decreased expression of Flightless I, a gelsolin family member and developmental regulator, in early-gestation fetal wounds improves healing. Mammalian Genome. 2011; 22(5–6):341–52. CrossRef PubMed
  48.  
  49. Namazi MR, Fallahzadeh MK, Schwartz RA. Strategies for prevention of scars: what can we learn from fetal skin? Int J Dermatol. 2011; 50(1):85–93. CrossRef PubMed
  50.  
  51. Singer AF, Clark RAF. Cutaneous wound healing. N Engl J Med. 1999; 341:738–46. CrossRef PubMed
  52.  
  53. Jennings RW, Adzick NS, Longaker MT, et al. Ontogeny of fetal sheep polymorphonuclear leukocyte phagocytosis. J Pediatr Surg. 1991; 26:853–5. CrossRef  
  54. Clark RAF. Wound Repair Overview and General Considerations. New York: Plenum Press; 1996–400 p.
  55.  
  56. Lorenz HP, Adzick NS. Scarless skin wound repair in the fetus. West J Med. 1993; 159:350–5. PubMed PubMedCentral
  57.  
  58. Ellis IR, Schor SL. Differential effects of TGF-1beta on hyaluronan synthesis by fetal and adult skin fibroblasts: Implications for cell migration and wound healing. Exp Cell Res. 1996; 228:326–33. CrossRef PubMed
  59.  
  60. Estes JM, Vandeberg J, Adzick NS, et al. Phenotypic and functional features of myofibroblasts in sheep fetal wounds. Differentiation. 1994; 56:173–81. CrossRef PubMed
  61.  
  62. Wu KK: Cyclooxygenase 2 induction: molecular mechanism and pathophysiologic roles. J Lab Clin Med. 1996; 128:242–5. CrossRef  
  63. Li HS, Hebda PA, Kelly LA, Ehrlich GD, Whitcomb DC, Dohar JE: Up-regulation of prostaglandin EP4 receptor messenger RNA in fetal rabbit skin wound. Arch Otolaryngol Head Neck Surg. 2000; 126:1337–43. CrossRef  
  64. Liechty KW, Adzick NS, Crombleholme TM. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine. 2000; 12:671–6. CrossRef PubMed
  65.  
  66. Liechty KW, Kim HB, Adzick NS, Crombleholme TM. Fetal wound repair results in scar formation in interleukin-10 deficient mice in a syngeneic murine model of scarless fetal wound repair. J Pediatr Surg. 2000; 35:866–72. CrossRef PubMed
  67.  
  68. Yoshimura A., Wakabayashi Yu, Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-β. J Biochem. 2010; 147(6):781–92. CrossRef PubMed PubMedCentral
  69.  
  70. Klass BR, Grobbelaar AO, Rolfe KJ. Transforming growth factor beta 1 signalling, wound healing and epiair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance. Postgrad Med J. 2009; 85:9–14. CrossRef PubMed
  71.  
  72. Shi-Wen X, Leask A, Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth factor Rev. 2008; 19:133–44. CrossRef PubMed
  73.  
  74. Pan D, Zhe X, Jakkaraju S, Taylot GA, Schuger L. P311 induces a TGF-β-independent, nonfibrogenic myofibroblasts phenotype. J Clin Invest. 2002; 110:1349–58. CrossRef PubMed PubMedCentral
  75.  
  76. Cowin AJ, Holmes TM, Brosnan P, Ferguson MW. Expression of TGF-beta and its receptors in murine fetal and adult dermal wounds. Eur J Dermatol. 2001; 11:424–31. PubMed
  77.  
  78. Soo C, Beanes SR, Hu FY, Zhang X, Dang C, Chang G, Wang Y, Nishimura I, Freymiller E, Longaker MT, Lorenz HP, Ting K: Ontogenetic transition in fetal wound transforming growth factor-beta regulation correlates with collagen organization. Am J Pathol. 2003, 163:2459–76. CrossRef  
  79. Schneider JC, Holvanahalli R, Helm P, Goldstein R, Kowalske K. Contractures in burn injury: defining the problem. J Burn Care Res. 2006; 27:508-14. CrossRef PubMed
  80.  
  81. Shah M, Foreman DM, Ferguson MW. Neutralizing antibody to TGF-beta reduces cutaneous scarring in adult rodents. J Cell Sci. 1994; 107:1137–57. PubMed
  82.  
  83. Hsu M, Peled ZM, Chin GS, Liu W, Longaker MT. Ontogeny of expression of transforming growth factorbeta 1 (TGF-beta 1), TGF-beta 3, and TGF-beta receptors I and II in fetal rat fibroblasts and skin. Plast Reconstr Surg. 2001; 107:1787–94. CrossRef PubMed
  84.  
  85. Ferguson MW, Duncan J, Bond J, Bush J, Durani P, So K, Taylor L, Chantrey J, Mason T, James G, Laverty H, Occleston NL, Sattar A, Ludlow A, O'Kane S. Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo controlled , phase I/II studies. Lancet. 2009; 373:1264–74. CrossRef  
  86. Pratsinis H, Giannouli CC, Zervolea I, Psarras S, Stathakos D, Kletsas D. Differential proliferative response of fetal and adult human skin fibroblasts to transforming growth factor-beta. Wound Repair and Regen. 2004; 12(3):374–83. CrossRef PubMed
  87.  
  88. Wilgus TA, Bergdall VK, Dipietro LA, Oberyszyn TM. Hydrogen peroxide disrupts scarless fetal wound repair. Wound Repair and Regen. 2005; 13(5):513–19. CrossRef PubMed
  89.  
  90. Chin GS, Kim WJ, Lee TY, Liu W, Saadeh PB, Lee S, Levinson H, Gittes GK, Longaker MT. Differential expression of receptor tyrosine kinases and Shc in fetal and adult rat fibroblasts: toward defining scarless versus scarring fibroblast phenotypes. Plast Reconstr Surg. 2000; 105(3):972–9. CrossRef PubMed
  91.  
  92. Hashimoto A, Kurosaki M, Gotoh N, Shibuya M, Kurosaki T. Shc regulates epidermal growth factor-induced activation of the JNK signaling pathway. J Biol Chem. 1999; 274(29):20139–43. CrossRef PubMed
  93.  
  94. Colwell AS, Longaker MT, Lorenz HP. Identification of differentially regulated genes in fetal wounds during regenerative repair. Wound Repair Regen. 2008; 16:450. CrossRef PubMed
  95.  
  96. Cheng J, Yu H, Deng S, Shen G. MicroRNA profiling in mid- and late-gestational fetal skin: implication for scarless wound healing. The Tohoku J Exp. Med. 2010; 221(3):203–9. CrossRef PubMed
  97.  
  98. Carter R, Sykes V, Lanning D. Scarless fetal mouse wound healing may initiate apoptosis through caspase 7 and cleavage of PARP. J Surg. Res. 2009; 156(1):74–9. CrossRef PubMed
  99.  
  100. Wei YJ, Yan XQ, Ma L, Wu JG, Zhang H, Qin LP. Oleanolic acid inhibits hypertrophic scarring in the rabbit ear model. Clin Exp Dermatol. 2011;36: 528–33. CrossRef PubMed
  101.  
  102. Pastar I, Stojadinovic O, Krzyzanowska A, Barrientos S, Stuelten C, Zimmerman K, Blumenberg M, Brem H, Tomic-Canic M. Attenuation of the transforming growth factor beta-signaling pathway in chronic venous ulcers. Mol Med. 2010; 16: 92–101. CrossRef PubMed PubMedCentral
  103.  
  104. Zhang Y, McCormick L, Gilliam A. Latency associated peptide prevents skin fibrosis in murine sclerodermatous graft-versus host disease, a model for human scleroderma. J Invest Dermatol. 2003; 121:713–19. CrossRef PubMed
  105.  
  106. Marquez-Aquirre A, Sandoval-Rodriguz A, Gonzalez- Cuevas J, Bueno-Topete M, NavarroPartida J, Arellano- Olivera I, Lucano-Laneros S, Armendariz-Borunda J. Adenoviral delivery of dominant negative transforming growth factor beta type II receptor up-regulates transcriptional repressor SKI-like oncogene, decreases matrix metalloproteinase 2 in hepatic stellate cell and prevents liver fibrosis in rats. J Gene Med. 2009; 11207–19.
  107.  
  108. Ahn JY, Park S, Yun YS, Song JY. Inhibition of type III TGF-β- receptor aggravates lung fibrotic response. Biomed Pharmacother. 2010; 64:472–76. CrossRef PubMed
  109.  
  110. Ferguson MW, Duncan J, Bond J, Bush J, Durani P, So K, Taylor L, Chantrey J, Mason T, James G, Laverty H, Occleston NL, Sattar A, Ludlow A, O'Kane S. Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo controlled , phase I/II studies. Lancet. 2009; 373:1264–74. CrossRef  
  111. Ehrlich HP, Kelley SF. Hypertrophic Scar: An interruption in the remodelling of repair- a laser Doppler blood flow study. Plast Reconstr Surg. 1992; 90:993–8. CrossRef  
  112. Reish RG, Eriksson E. Scars: a review of emerging and currently available therapies. Plast Reconstr Surg. 2008; 122:1068–78. CrossRef PubMed
  113.  
  114. Agar N, Young AR. Melanogenesis: a photoprotective response to DNA damage? Mutation Res. 2005; 571:121–32. CrossRef PubMed
  115.  
  116. El-Obeid A, Al-Harbi S, Al-Jomah N, Hassib A. Herbal melanin modulates tumor necrosis factor (TNF-alfa), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF) production. Phytomedicine. 2006; 13: 324–33. CrossRef PubMed
  117.  
  118. Taburets OV, Morgaienko OO, Kondratiuk TO, Beregova TV, Ostapchenko LI. The Effect of «Melanin-Gel» on the Wound Healing. Res J Pharmaceut Biol and Chem Sci. 2016; 7(3):2031–8.
  119.  
  120. Dranitsina AS, Taburets OV, Dvorshchenko KO, Grebinyk DM, Beregova TV, Ostapchenko LI. TGFB 1, PTGS 2 Genes Expression during Dynamics of Wound Healing and with the Treatment of Melanin. Res J Pharmaceut Biol and Chem Sci. 2017; 8(1):2014–2023.
  121.  
  122. Gao Fu-Lei, Jin Rong, Zhang Lu, Zhang Yu-Guang. The contribution of melanocytes to pathological scar formation during wound healing. Int J Clin Exp Med. 2013; 6(7):609–13. PubMed PubMedCentral
  123.  
  124. Cui Y, Wang XL, Xue J, Liu JY, Xie ML. Chrysanthemum morifolium extract attenuates high-fat milk-induced fatty liver through peroxisome proliferator-activated receptor alpha-mediated. Nutr Res. 2014; 34(3):268–75. CrossRef PubMed
  125.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.