INCIDENCE OF ALLELIC POLYMORPHISMS OF GENES ENCODING SUBUNITS ATPSENSITIVE POTASSIUM CHANNELS (ILE337→VAL AND GLU23→LYS KCNJ11 GENE, AND SER1369→ALA ABCC8 GENE) IN THE UKRAINIAN POPULATION
R.B. Strutynskyi, R.A. Rovenets , О.V. Svarychevskyi, V.E. Dosenko
O.O. Bogomoletz Institute of Physiology National Academy of Science of Ukraine, Kyiv.
DOI: https://doi.org/10.15407/fz63.03.003
Abstract
Polymorphisms of genes encoding ATP-sensitive potassium
channels as risk factors for cardiovascular disease attracted
the attention of researchers recently. KCNJ11 (Kir6.2) polymorphisms
Ile337→Val and Glu23→Lys, and ABCC8 (SUR1)
polymorphisms Ser1369→Ala was genotyped 529 volunteers
in Ukrainian population by polymerase chain reaction (RTPCR)
and restriction fragment length polymorphism analysis.
Ile337→Val polymorphism has the next genotype distribution
among 383 Ukrainian habitants: Ile/Ile in 140 persons (36.6
%), Ile/Val in 177 persons (46.2 %) and Val/Val in 66 persons
(17.2 %). The frequency of genotypes Glu/Glu, Glu/Lys and
Lys/Lys of polymorphism Glu23→Lys, and Ser/Ser, Ser/Ala
and Ala/Ala of polymorphism Ser1369→Ala in 504 persons
was 40.9 (206 subjects), 44.8 (226 subjects) and 14.3% (72
subjects) correspondingly. Inheritance of SNPs Glu23→Lys
and Ser1369→Ala were linked. Thus, distribution of SNPs
Ser1369→Ala and Glu23→Lys showed that it is similar to the
European and close to Asian populations. The frequency of
homozygote allele Ile/Ile and heterozygote allele Ile/Val of
polymorphism Ile337→Val in Ukrainian population is intermediate
between residents of the two aforementioned populations.
However, in Ukrainian population there is a slight increase
genotype Val/Val.
Keywords:
allelic polymorphisms; KCNJ11; ABCC8; Ile337→Val; Glu23→Lys; Ser1369→Ala; KATP-channels
References
- Moybenko OO, Strutynskyi RB, Yagupolskii LM, Mohort MA, Shalamai AS. Organization of industrial production of Flokalin - new myotropic spasmolytic and cardioprotector. Nauka i innovacii (Science and Innovation). 2009; 5(1):80–4. [Ukrainian].
- Grover GJ, Garlid KD. ATP-sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol. 2000; 32:677–95.
CrossRef
PubMed
- Strutyns'kyĭ RB, Kotsiuruba AV, Rovenets' RA, Strutyns'ka NA, Iagupols'kyĭ IuL, Sagach VF, Moĭbenko OO. Biochemical mechanisms of the cardioprotective effect of the K(ATP) channels opener flocalin (medicinal form) in ischemia-reperfusion of myocardium. Fiziol Zh. 2013; 59(4):16–27. [Ukrainian].
PubMed
- McCully JD, Levitsky S. Mitochondrial ATP-sensitive potassium channels in surgical cardioprotection. Arch Biochem Biophys. 2003; 420:237–45.
CrossRef
- Suryapranata H. Coronary haemodynamics and vasodilatory profile of a potassium channel opener in patients with coronary artery disease. Eur Heart J. 1993; 14:16–21.
CrossRef
PubMed
- Dick GM, Tune JD. Role of potassium channels in coronary vasodilation. Exp Biol Med (Maywood). 2010; 235(1):10–22.
CrossRef
PubMed
- Smith KJ, Chadburn AJ, Adomaviciene A, Minoretti P, Vignali L, Emanuele E, Tammaro P. Coronary spasm and acute myocardial infarction due to a mutation (V734I) in the nucleotide binding domain 1 of ABCC9. Int J Cardiol. 2013; 168(4):3506–13.
CrossRef
PubMed
- Strutyns'kyĭ RB, Pyvovar SM, Tumanovs'ka LV, Moĭbenko OO. Cardioprotective effects of flokalin: relative role of activation of sarcolemmal and mitochondrial adenosine triphosphate-dependent potassium channels. Fiziol Zh. 2008; 54(6):15–23. [Ukrainian].
PubMed
- Haïssaguerre M, Chatel S, Sacher F, Weerasooriya R, Probst V, Loussouarn G, Horlitz M, Liersch R, Schulze- Bahr E, Wilde A, Kääb S, Koster J, Rudy Y, Le Marec H, Schott JJ. Ventricular fibrillation with prominent early repolarization associated with a rare variant of KCNJ8/ KATP channel. J Cardiovasc Electrophysiol. 2009 Jan; 20(1):93–8.
CrossRef
PubMed
- Strutyns'kyĭ RB, Neshcheret OP, Tumanovs'ka LV, Rovenets' RA, Moĭbenko OO. Cardioprotective effects of flokalin in experiments in vivo: influence on hemodynamic and myocardial lesions in ischemia-reperfusion. Fiziol Zh. 2009; 55(5): 9–16. [Ukrainian].
PubMed
- Das B, Sarkar C. Mitochondrial KATP channel activation is important in the antiarrhythmic and cardioprotective effects of non-hypotensive doses of nicorandil and cromakalim during ischemia/reperfusion: a study in an intact anesthetized rabbit model. Pharmacol Res. 2003; 47: 447–61.
CrossRef
- Xi HL, Liu JF, Li L, Wan J. Relationship between dilated cardiomyopathy and the E23K and I337V polymorphisms in the Kir6.2 subunit of the KATP channel. Genet Mol Res. 2013 Oct 10;12(4):4383–92.
CrossRef
PubMed
- Yamada S, Kane GC, Behfar A, Liu XK, Dyer RB, Faustino RS, Miki T, Seino S, Terzic A. Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant. J Physiol. 2006 Dec 15;577(Pt 3):1053–65.
CrossRef
PubMed PubMedCentral
- Reyes S, Park S, Johnson BD, Terzic A, Olson TM. KATP channel Kir6.2 E23K variant overrepresented in human heart failure is associated with impaired exercise stress response. Hum Genet. 2009 Dec;126(6):779–89.
CrossRef
PubMed PubMedCentral
- Riedel MJ, Steckley DC, Light PE. Current status of the E23K Kir6.2 polymorphism: implications for type-2 diabetes. Hum Genet. 2005 Feb;116(3):133–45.
CrossRef
PubMed
- Schwanstecher C, Meyer U, Schwanstecher M. Kir6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic ß-cell ATP-sensitive K+ channels. Diabetes. 2002 Mar;51(3):875–9.
CrossRef
PubMed
- Medeiros-Domingo A, Tan BH, Crotti L, Tester DJ, Eckhardt L, Cuoretti A, Kroboth SL, Song C, Zhou Q, Kopp D, Schwartz PJ, Makielski JC, Ackerman MJ. Gain-offunction mutation S422L in the KCNJ8-encoded cardiac K(ATP) channel Kir6.1 as a pathogenic substrate for Jwave syndromes. Heart Rhythm. 2010 Oct;7(10):1466–71.
CrossRef
PubMed PubMedCentral
- Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O'Cochlain F, Gao F, Karger AB, Ballew JD, Hodgson DM, Zingman LV, Pang YP, Alekseev AE, Terzic A. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet. 2004 Apr;36(4):382–7.
CrossRef
PubMed PubMedCentral
- Olson TM, Alekseev AE, Moreau C, Liu XK, Zingman LV, Miki T, Seino S, Asirvatham SJ, Jahangir A, Terzic A. KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat Clin Pract Cardiovasc Med. 2007 Feb;4(2):110–6.
CrossRef
PubMed PubMedCentral
- Olson TM, Terzic A. Human KATP channelopathies: diseases of metabolic homeostasis. Pflugers Arch. 2010 Jul;460(2):295–306.
CrossRef
PubMed PubMedCentral
- Tester DJ, Tan BH, Medeiros-Domingo A, Song C, Makielski JC, Ackerman MJ. Loss-of-function mutations in the KCNJ8-encoded Kir6.1 K(ATP) channel and sudden infant death syndrome. Circ Cardiovasc Genet. 2011 Oct;4(5):510–5.
CrossRef
PubMed PubMedCentral
- Reyes S, Terzic A, Mahoney DW, Redfield MM, Rodeheffer RJ, Olson TM. K(ATP) channel polymorphism is associated with left ventricular size in hypertensive individuals: a large-scale community-based study. Hum Genet. 2008 Jul;123(6):665–7.
CrossRef
PubMed PubMedCentral
- Riedel MJ, Boora P, Steckley D, de Vries G, Light PE. Kir6.2 polymorphisms sensitize beta-cell ATP-sensitive potassium channels to activation by acyl CoAs: a possible cellular mechanism for increased susceptibility to type 2 diabetes? Diabetes. 2003 Oct; 52(10):2630–2635.
CrossRef
PubMed
- NCBI, Reference SNP (refSNP) Cluster Report_rs5219.
- NCBI, Reference SNP (refSNP) Cluster Report_rs5215.
- Chutkow WA, Simon MC, Le Beau MM, Burant CF. Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes. 1996 Oct;45(10):1439–45.
CrossRef
PubMed
- Qin LJ, Lv Y, Huang QY. Meta-analysis of association of common variants in the KCNJ11-ABCC8 region with type 2 diabetes. Genet Mol Res. 2013 Aug 20;12(3):2990–3002.
CrossRef
PubMed
- NCBI, Reference SNP (refSNP) Cluster Report_rs757110.
|