Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2015; 61(5): 35-45


THYMIC HORMONES, ANTIOXIDANT ENZYMES AND NEUROGENESIS OF BULBUS OLFACTORIUS IN RATS WITH PARKINSONISM: THE EFFECT OF MELATONIN

I.F.Labunets1, S.A. Talanov2, R.G. Vasilyev1, A.E. Rodnichenko1, N.A. Utko1, I.A. Kyzminova1, B.S.Kopjak2, E.V. Podjachenko1, V.F.Sagach2, G.M. Butenko1

  1. Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine;
  2. O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz61.05.035

Abstract

The adult rats received both neurotoxin 6-hidroxidophamine and neurotoxin and melatonin. It was investigated a link between the disturbances of the brain antioxidant enzymes activity and thymic endocrine function, as possible pathogenic factors of parkinsonism, with changes in the number of neural stem cells (NSC) in the bulbus olfactorius. Rats with motor asymmetry in the apomorphine test and significant damage of the dopaminergic neurons in the substantia nigra have decreased levels of superoxide dismutase, catalase and glutathione peroxidase activities in striatum (1.3-1.4 times) and blood thymulin content (8 times) compared to control group. On the contrary, examined indices were not changed in rats without motor asymmetry and correspondingly partly damaged neurons. The number of nestin+-cells in the bulbus olfactorius of rats without motor asymmetry increased from 91.2% to 99.3% and remained unchanged after melatonin administration course (10 mg/kg during 18 days). Melatonin administration resulted in the decrease in the number of nestin+-cells along with significant elevation of the decreased antioxidant enzymes activity and blood thymulin content in rats with circulatory movements. Possibilities of the enhancement of NSC differentiation in bulbus olfactorius into neuronal direction in such animals has been discussed. The conclusion about the potential use of melatonin as a neuroprotector in parkinsonism therapy has been made.

Keywords: parkinsonism; antioxidant enzymes; thymulin; melatonin; neural stem cells;, bulbus olfactorius

References

  1. Ugrumov MV. Neurodegenerative diseases: fundamental and applied aspect. Nauka: Moscow; 2010. [Russian].
  2.  
  3. Karaban IN, Karaban NV, Karasevich NV. Means of neuroprotection in Parkinson's disease. Int J Neurol. 2011;44(6):25-35 [Russian].
  4.  
  5. Bove J, Perier C. Neurotoxin-based models of Parkinson's disease. Neuroscience. 2012;211: 55-76. CrossRef PubMed
  6.  
  7. Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson's disease. Neurochem Int. 2013;62(5):803-19. CrossRef PubMed
  8.  
  9. Hwang O. Role of oxidative stress in Parkinson's disease. Exp Neurobiol. 2013;22(1):11-7. CrossRef PubMed PubMedCentral
  10.  
  11. Reiter RJ, Manchestr LC, Tan DX. Neurotoxins: free radical mechanisms and melatonin protection. Curr Neuropharmacol. 2010;8(3):194-210. CrossRef PubMed PubMedCentral
  12.  
  13. Monahan AJ, Warren M, Carvey PM. Neuroinflammation and peripheral immune infiltration in Parkinson's disease: an autoimmune hypothesis. Cell Transplant. 2008;17(4):363-72.
  14.  
  15. Abdurasulova IN, Klimenko VM. The role of immune and glial cells in neurodegenerative procecess. Med Acad J. 2011;11(1):12-29. [Russian].
  16.  
  17. Labunets IF, Tsupikov OM, Kyryk VM, Kuchuk OV, Pivneva TA, Skibo GG, Butenko GM. The influence of neurotransplantation on functional activity of pineal gland and thymus in brain ischemic injury. In: Genetic and Regenerative Medicine: Problems and Perspektives, Proceedings of the International Conference, Kiev, Ukraine, October 14-15, 2010; J. AMS Ukr., 2010, 16, suppl., 100-1. [Ukrainian].
  18.  
  19. Yarilin AA, Pinchuk VG, Grinevich YuA. Structure of Thymus and Differentiation of T Lymphocytes. Naukova Dumka: Kiev; 1991. [Ukrainian].
  20.  
  21. Lunin SM, Novoselova EG. Thymus hormones as a prospective anti-inflamatory agents. Expert Opin Ther Targets. 2010;14(8):775-86. CrossRef PubMed
  22.  
  23. Naddad JJ, Hanbali LH. The anti-inflammatory and immunomodulatory activity of thymulin peptide is NFkB dependent and involves the downregulation of I kB-α. Am J Med Biol Res.2013,1(2):41-9. CrossRef  
  24. Pardo J., Schwerdt JI, Reggiani PC, Zappa MF, Pereyra AS, Brown OA, GoyaRG. Physiology, molecular biology and therapeutic potential of the thymic peptide thymulin. Physiol. Mini Reviews. 2012;6(1):2-12.
  25.  
  26. Carpentier PA, Palmer TD. Immune influence on adult neural stem cell regulation and function. Neuron. 2009;64(1):79-92. CrossRef PubMed PubMedCentral
  27.  
  28. Kokaia Z, Martino G, Schwartz M, Lindvall O. Cross-talk between neural stem cells and immune cells: the key to better brain repair. Nat Neurosci. 2012;15(8):1078-87. CrossRef PubMed
  29.  
  30. Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders – time for clinical translation? JCI. 2010;120(1):29-40. CrossRef PubMed PubMedCentral
  31.  
  32. Rybachuk O, Pivneva T. Contribution of neural stem cells to regeneration of the central nervous system. Int J Physiol Pathophysiol. 2014;5(1):83-96. CrossRef  
  33. Hermann A, Storch A. Endogenous regeneration in Parkinson's disease: Do we need orthopic dopaminergic neurogenesis? Stem Cells. 2008;26:2749-52.
  34.  
  35. Zozulya YuA, Lisyany NI. Neurogenic differentiation of stem cells. Kyiv: OOO UIPK "EksOb"; 2005. [Ukrainian].
  36.  
  37. Labunets IF, Talanov SA, Rodnichenko AE, Vasilyev RG, Utko NA, Kyzminova IA, Rymar SE, Sagach VF, Butenko GM. The study in experiment of cytokine and hormone influence on neurodegenerative diseases pathogenesis stages as possible way to increase cell therapy efficacy. In: Transplantation: Present, Past and Future, Proceedings of the International Conference. Kyiv, 2014;p.28. [Ukrainian].
  38.  
  39. Talanov SA, Sagach VF. Antioxidants prevent experimental hemiparkinsonism in rats. Fiziol Zh. 2008;54(4):23-9. [Ukrainian].
  40.  
  41. Srinivasan V. Therapeutic potential of melatonin and its analogs in Parkinson's disease: focus on sleep and neuroprotection. Ther Adv Neurol Disord. 2011;4(5):297-317. CrossRef PubMed PubMedCentral
  42.  
  43. Gutierrer-ValdezAL, Anaya-Martinez V, Ordonez-Librado JL, Garcia-Ruiz R, Torres-Esquivel C, Moreno-Rivera M, Sanchez-Betancourt J, Montiel-Flores E, Avila-Costa MR. Effect of chronic L-Dopa or melatonin treatments after dopamine deafferentation in rats: dyskinesia, motor performance, and cytological analysis. ISRN Neurology. 2012;article ID 360379,16p.
  44.  
  45. Tomas-Zapico C, Coto-Montes A. A proposed mechanisms to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res. 2005;39(2):99-104. CrossRef PubMed
  46.  
  47. Cardinali DP, Esquifino AI, Srinivasan V, Pandi-Perumal SR. Melatonin and the immune system in aging. Neuroimmunomodulation. 2008;15(4-6):272-8.
  48.  
  49. LabunetsI. Pineal gland and rhythms of immune system in aging. Experimental study. LAP LAMBERT Academic Publishing: Saarbrucken; 2012.
  50.  
  51. Moriya T, Horie N, Mitome M, Shinohara K. Melatonin influences the proliferative and differentiative activity of neural stem cells. J Pineal Res. 2007;42(4):411-8. CrossRef PubMed
  52.  
  53. Sotthibundhu A, Phansuwan-Pujito P, Govitrapong P. Melatonin increase proliferation of cultured neural stem cells obtained from adult mouse subventricular zone. J Pineal Res. 2010; 49(3):291-300. CrossRef PubMed
  54.  
  55. European convention for the protection of vertebrate animals used for experimental and other scientific purposes. Council of Europe, Strasbourg, 1986; 53.
  56.  
  57. Blandini F, Armentero M. Animal models of Parkinson's disease. FEBS J. 2012;279(7):1156-66. CrossRef PubMed
  58.  
  59. Talanov SA, Oleshko NN, Tkachenko MN, Sagach V.F. Pharmacoprotective influences on different links of the mechanism underlying 6-hydroxydopamine-induced degeneration of nigro-striatal dopaminergic neurons. Neurophysiology. 2006;38(2):150-6. [Ukrainian].
  60.  
  61. Muradian KK, Utko NA, Mozzhukhina TG, Pishel IN, Litoshenko AYa, Bezrukov VV, Fraifeld VE. Correlative links between superoxide dismutase, catalase and glutathione peroxidase activities in the liver of mice. Ukr Biochem J. 2003;75(1):33-7. [Ukrainian].
  62.  
  63. Bach JF, Dardenne M, Bach MA. Demonstration of a circulation thymic hormone in mouse and man. Transplant Proc. 1973;1(1):99-101.
  64.  
  65. Lakin GF. Biometrics. Vysshaya Shkola: Moscow; 1990 [Russian].
  66.  
  67. Esposito E, Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol. 2010;8(3):228-42. CrossRef PubMed PubMedCentral
  68.  
  69. Hritcu L. Neurotransmitters and immunity: 1. Dopamine. In: Analele stiintifice ale Universitatii "Alexandree loan Cuza". 2007; VIII:107-13.
  70.  
  71. Reggiani P, Morel G, Console G, Barbeito CG, Rodriguez SS, Brown OA, Bellini MJ, Pléau JM, Dardenne M, Goya RG. The thymus–neuroendocrine axis. Physiology, molecular biology, and therapeutic potential of the thymic peptide thymulin. Ann N Y Acad Sci. 2009;1153(1):98-106. CrossRef PubMed PubMedCentral
  72.  
  73. Alonso R, Chaudieu I, Diorio J, Krishnamurthy A, Boksa P. Interleukin2 Modulates Evoked Release of [3H] Dopamine in Rat Cultured Mesencephalic Cells. J Neurochem. 1993;61(4):1284-90. CrossRef PubMed
  74.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.