Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2015; 61(5): 28-34


BIOELECTRIC ACTIVITY OF INTERNEURONES OF SPINAL CORD IN THE EXPERIMENTAL MENOPAUSE IN FEMAL RATS

A.G. Rodinsky, S.S. Tkachenko

    State establishment "Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine"
DOI: https://doi.org/10.15407/fz61.05.028

Abstract

We analyzed the amplitude-time characteristics of the components of the potential dorsal surface of the spinal cord (PDS SC) in experimental menopause. The excitation threshold increased at 102.14% and the latent period at 94.12% in animals with experimental menopause. In the context of supramaximal stimulation of dorsal root L5 identified N1 amplitude growth at 10.14%, N2 at 11.82%, N3 at 48.28%, and P-wave 31.58% and to increase component N3 26.54% in the experimental group. At condition of paired stimulation pulses on the time interval from 2 to 3 ms there was a significant increase, and from 6 to 30 ms – a depression of N1-component of the second PDS SC in the group of animals with experimental menopause. Thus, our results suggest the presence of changes in nerve structures of the posterior horn of the spinal cord at conditions of estrogen deficiency.

Keywords: menopause; potential of dorsal surface of spinal cord; interneuron; rat

References

  1. Dobrokhotova YuE. Menopausal syndrome. Lechebnoe delo. 2004;(1):3-8. [Russian].
  2.  
  3. Malichenko SB, Volkova VA, Khalidova KK. System changes in menopause. The role of calcium deficiency and vitamin D in the formation of post-menopausal symptom. Sovpemennaya revmatologiya. 2008;(1):20-31. [Russian].
  4.  
  5. Craft RM. Modulation of pain by estrogens. Pain 2007;132(1):3-12. CrossRef PubMed
  6.  
  7. Gu Q, Korach KS, Moss RL. Rapid action of 17β-estradiol on kainateinduced currents in hippocampal neurons lacking intracellular estrogen receptors. Endocrinology. 1999;140(2):660-6. CrossRef PubMed
  8.  
  9. Jiang P, Kong Y, Zhang XB, Wang W, Liu CF, Xu TL. Glycine receptor in rat hippocampal and spinal cord neurons as a molecular target for rapid actions of 17-β-estradiol. Mol Pain. 2009;5:2. CrossRef PubMed PubMedCentral
  10.  
  11. Li W, Jin X, Covey DF, Steinbach JH. Neuroactive steroids and human recombinant rho1 GABAC receptors. J Pharmacol Exp Ther. 2007;323(1):236-47. CrossRef PubMed
  12.  
  13. Maggi A, Ciana P, Belcredito S, Vegeto E. Estrogens in the nervous system: mechanisms and nonreproductive functions. Annu Rev Physiol. 2004;66:291-313. CrossRef PubMed
  14.  
  15. Edwards DP. Regulation of signal transduction pathways by estrogen and progesterone. Annu Rev Physiol. 2005;6:335-76. CrossRef PubMed
  16.  
  17. Levin ER. Cellular functions of plasma membrane estrogen receptors. Steroids. 2002;67(6):471-5. CrossRef  
  18. Qiu J, Bosch MA, Tobias SC, Grandy DK, Scanlan TS, Ronnekleiv OK, Kelly MJ. Rapid signaling of estrogen in hypothalamic neurons involves a novel G-proteincoupled estrogen receptor that activates protein kinase C. J Neurosci 2003;23(29):9529-40.
  19.  
  20. Vanderhorst VG, Gustafsson JA, Ulfhake B. Estrogen receptor-α and –β immunoreactive neurons in the brainstem and spinal cord of male and female mice: relationships to monoaminergic, cholinergic, and spinal projection systems. J Comp Neurol. 2005;488(2):152-79. CrossRef PubMed
  21.  
  22. Zhong YQ1, Li KC, Zhang X. Potentiation of excitatory transmission in substantia gelatinosa neurons of rat spinal cord by inhibition of estrogen receptor alpha. Molecular Pain. 2010;6:92.
  23.  
  24. Amandusson S, Blomqvist A. Estrogen receptor-α expression in nociceptive-responsive neurons in the medullary dorsal horn of the female rat. Eur J Pain 2009;14(3):245-8. CrossRef PubMed
  25.  
  26. Mitrovic I, Margeta-Mitrovic M, Bader S, Stoffel M, Jan LY, Basbaum AI. Contribution of GIRK2-mediated postsynaptic signaling to opiate and α2-adrenergic analgesia and analgesic sex differences. Proc Natl Acad Sci USA. 2003;100(1):271-6. CrossRef PubMed PubMedCentral
  27.  
  28. Rodins'kiy OG, Tkachenko SS, Mozgunov OV. Electrophysiological analysis of neuromuscular excitability complex in experimental. Eksperym ta klin fiziol and biohim. 2014;(3):7-13. [Ukrainian].
  29.  
  30. Unal D, Halici Z, Altunkaynak Z, Keles ON, Oral E, Unal B. A new hypothesis about neuronal degeneration appeared after a rat model of menopause. Neurodegener Diseases. 2012;9(1):25-30. CrossRef PubMed
  31.  
  32. Makiy EA, Nerush PA, Rodinskiy AG. Parameters of the potential of the dorsal surface of the spinal cord of rats with experimental hyperthyroidism. Neyrofiziologiya.2001;33(4):279–85. [Russian].
  33.  
  34. Florov AK. On the origin of the dorsal surface of the potential of the brain sinnogo [dissertation]. Dnepropetrovsk state medical academy; 1966. [Russian].
  35.  
  36. Ogunshola OO, Antic A, et al. Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem. 2002;277(13):11410-15. CrossRef PubMed
  37.  
  38. Neumcke B, Stampfli R. Geterogeneity of external surface charges near sodium channels in the nodal membrane of frog nerve. Pflugers Arch. 1984;401:125-31. CrossRef PubMed
  39.  
  40. Beck MM, Hansen KK. Role of estrogen in avian osteoporosis. Poult. Sci. 2004;83(2):200-6.
  41.  
  42. Szekely G, Kozaras B. Electron microscopic identification of postsynaptic dorsal root terminals: a possible substrate of dorsal root potentials in the frog spinal cord. Exp. Brain Res. 1977;29(3/4):531-39.
  43.  
  44. Shugurov OO, Shugurov OA. Investigation of occurrence of late positive wave of the PDS SC. Vіsnik Dnіpropetrovs'kogo unіversitetu (Bіologіya, Ekologіya). 2002;1(10):149-54. [Russian].
  45.  
  46. Capek R, Esplin B. Homosynaptic depression and transmitter turnover in spinal monosynaptic pathway. J. Physiol. 1977;40(1):95-105.
  47.  
  48. Islamov RR, Murashov AK, Chelyshev YuA. Protein synthesis in the axon: Overview. Morfologiya. Arkhiv anatomii, gistologii i embriologii: Nauchno-teoreticheskiy meditsinskiy zhurnal. 2005;128(6):70-6. [Russian].
  49.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.