Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2017; 63(2): 95-104


EPIGENETICS OF ARTERIAL HYPERTENSION

M.V.Khaitovych1, A.P. Burlaka2, V.S.Potaskalova1

  1. Bogomolets National Medical University, Kyiv;
  2. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz63.02.095

Abstract

The literature review summarizes modern data which deals with the role of epigenetic influences (DNA methylation, posttranslational modification of histones, RNA interference) in case of mechanism of primary arterial hypertension (AH) development. It has been pointed out the contribution of oxidative stress (OS) in disturbance of transcriptional and posttranscriptional regulation in case of AH; the role of hyperhomocysteinemia in formation of vascular stiffness. It has been described the mechanisms of regulation of cytoprotective role of autophagy. Underlying the epigenetic influences, the following approaches are perspective: 1) prophylactic and treatment AH with administration of resveratrol (activates SIRT1 and decreases OS, increases activity of endothelial NO-synthase); folates (prevent hypomethylation of DNA); probiotics (action on microRNA); melatonin (decreases demethylation of endothelial NO-synthase promotor); 2) prevention of disease progression - use of inhibitors of DNA methylation and autophagy modulators (reduce fibrosis and hypertrophy of myocardium).

Keywords: epigenetics; arterial hypertension.

References

  1. Scherrer U, Rimoldi SF, Sartori C, Messerli FH, Rexhaj E. Fetal programming and epigenetic mechanisms in arterial hypertension. Curr Opin Cardiol. 2015; 30(4): 393 – 7. CrossRef PubMed
  2.  
  3. Vayserman AM, Voytenko VP, Mehova LV. Epigeneticheskaya epidemiologiya vozrast-zavisimyih zabolevaniy. Ontogenez. 2011, 42 (1): 1–21. [Russian].
  4.  
  5. Smith C.J., Ryckman K.K. Epigenetic and developmental influences on the risk of obes. ity, diabetes, and metabolic syndrome. Diabetes, Metabolic Syndr and Obes: Targ and Ther. 2015; 8; 295–302.
  6.  
  7. Leow MK. Environmental origins of hypertension: phylogeny, ontogeny and epigenetics. Hypertens Res. 2015; 38(5): 299 – 307. CrossRef PubMed
  8.  
  9. Friso S, Carvajal CA, Fardella CE, Olivieri O. Epigenetics and arterial hypertension: the challenge of emerging evidence. Transl Res. 2015; 165(1): 154 –65. CrossRef PubMed
  10.  
  11. Nistala R, Hayden MR, Demarco VG, Henriksen EJ, Lackland DT, Sowers JR. Prenatal Programming and Epigenetics in the Genesis of the Cardiorenal Syndrome. Cardiorenal Med. 2011; 1(4): 243 – 54. CrossRef PubMed PubMedCentral
  12.  
  13. Belyaeva LE. Epigeneticheskie mehanizmyi i fenotip. Fundamentalnyie i prikladnyie problemyi stressa: materialyi III Mezhdunar. nauch.-prakt. konf., Vitebsk, 16-17 aprelya 2013g. – Vitebsk: VGU imeni P.M. Masherova, 2013: 124-6. [Russian].
  14.  
  15. Olzscha H, Sheikh S, La Thangue NB. Deacetylation of chromatin and gene expression regulation: a new target for epigenetic therapy. Crit Rev Oncog. 2015; 20(1-2): 1–17. CrossRef PubMed
  16.  
  17. Vanyushin BF. Epigenetika segodnya i zavtra. Vavil Zhur Genet i Selekt. 2013; 17 (4/2): 805–832. [Russian].
  18.  
  19. Yang JY, Wang Q, Wang W, Zeng LF. Histone deacetylases and cardiovascular cell lineage commitment. World J Stem Cells. 2015; 7(5): 852–8. CrossRef PubMed PubMedCentral
  20.  
  21. Khavinson VKh, Lin'kova NS, Morozova EA, Gutop EO, Elashkina EV. Molecular mechanisms of cardiovascular disease. Usp Fiziol Nauk. 2014; 45(3): 57–65. PubMed
  22.  
  23. Magenta A., Greco S., Gaetano C., Martelli F. Oxidative Stress and MicroRNAs in Vascular Diseases. Int J Mol Sci. 2013; 14(9): 17319–46. CrossRef PubMed PubMedCentral
  24.  
  25. Raftopoulos L, Katsi V, Makris T, Tousoulis D, Stefanadis C, Kallikazaros I. Epigenetics, the missing link in hypertension. Life Sci. 2015; 129: 22–6. CrossRef PubMed
  26.  
  27. Schleithoff C., Voelter-Mahlknecht S., Dahmke I. Mahlknecht U. On the epigenetics of vascular regulation and disease. Clin Epigen. 2012; 4: 7. CrossRef PubMed PubMedCentral
  28.  
  29. Johnson AK, Zhang Z, Clayton SC, Beltz TG, Hurley SW, Thunhorst RL, Xue B. The Roles of Sensitization and Neuroplasticity in the Long-Term Regulation of Blood Pressure and Hypertension. Am J Physiol Regul Integr Comp Physiol. 2015; 309(11): 1309–25. CrossRef PubMed PubMedCentral
  30.  
  31. Nguyen AT, Zhang Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev 2011; 25: 1345-58. CrossRef PubMed PubMedCentral
  32.  
  33. Kim GH1, Ryan JJ, Archer SL. The role of redox signaling in epigenetics and cardiovascular disease. Antioxid Redox Signal. 2013; 18(15): 1920–36. CrossRef PubMed PubMedCentral
  34.  
  35. Xu Y. Transcriptional regulation of endothelial dysfunction in atherosclerosis: an epigenetic perspective. J Biomed Res. 2014; 28(1): 47–52. PubMed
  36.  
  37. Orlov SN., Koltsova SV, Kapilevich LV, Dulin NO, Gusakova SV. Kotransporteryi kationov i hlora: regulyatsiya, fiziologicheskoe znachenie i rol v patogeneze arterialnoy gipertenzii. Usp biolog him. 2014, 54: 267–98. [Russian].
  38.  
  39. Martin M.M., Buckenberger J.A., Jiang J. et al. The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microRNA-155 binding. J Biol Chem. 2007; 282(33): 24262–9. CrossRef PubMed PubMedCentral
  40.  
  41. Sethupathy P., Borel C., Gagnebin M. et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional singlenucleotide polymorphisms related to phenotypes. Am J Hum Genet. 2007; 81: 405–13. CrossRef PubMed PubMedCentral
  42.  
  43. Duthie SJ. Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc. 2011; 70(1): 47–56. CrossRef PubMed
  44.  
  45. Narayanan N, Pushpakumar SB, Givvimani S, Kundu S, Metreveli N, James D, et al. Epigenetic regulation of aortic remodeling in hyperhomocysteinemia. FASEB J. 2014; 28(8): 3411–22. CrossRef PubMed PubMedCentral
  46.  
  47. Majumder S, Advani A. The epigenetic regulation of podocyte function in diabetes. J Diabetes Complications. 2015; 29(8): 1337–44. CrossRef PubMed
  48.  
  49. Chang PY, Chen YJ, Chang FH, Lu J, Huang WH, Yang TC, et al. Aspirin protects human coronary artery endothelial cells against atherogenic electronegative LDL via an epigenetic mechanism: a novel cytoprotective role of aspirin in acute myocardial infarction. Cardiovasc Res. 2013; 99(1): 137–45. CrossRef PubMed
  50.  
  51. Ohtani K, Vlachojannis GJ, Koyanagi M, Boeckel JN, Urbich C, Farcas R, et al. Epigenetic regulation of endothelial lineage committed genes in pro-angiogenic hematopoietic and endothelial progenitor cells. Circ Res. 2011; 109(11): 1219–29. CrossRef PubMed
  52.  
  53. Zhang W.Epigenetics of epithelial Na(+) channeldependent sodium uptake and blood pressure regulation. World J Nephrol. 2015; 4(3): 363–6. CrossRef PubMed PubMedCentral
  54.  
  55. Nallamshetty S, Chan SY, Loscalzo J. Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med. 2013; 64: 20–30. CrossRef PubMed PubMedCentral
  56.  
  57. Bennett MR. Cell death in cardiovascular disease. Arterioscler Thromb Vasc Biol. 2011; 31: 2779–80. CrossRef PubMed
  58.  
  59. Marcu R, Kotha S, Zhi Z, Qin W, Neeley CK, Wang RK et al. The mitochondrial permeability transition pore regulates endothelial bioenergetics and angiogenesis. Circ Res. 2015; 116(8): 1336–45. CrossRef PubMed PubMedCentral
  60.  
  61. Ortega Ávila JG, Echeverri I, de Plata CA, Castillo A. Impact of oxidative stress during pregnancy on fetal epigenetic patterns and early origin of vascular diseases. Nutr Rev. 2015; 73(1): 12–21. CrossRef PubMed
  62.  
  63. Macconi D, Remuzzi G, Benigni A .Key fibrogenic mediators: old players. Renin-angiotensin system. Kidney Int Suppl (2011). 2014; 4(1): 58–64. CrossRef PubMed PubMedCentral
  64.  
  65. Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012;441: 523–40. CrossRef PubMed PubMedCentral
  66.  
  67. Wang S1, Xia P, Rehm M, Fan Z. Autophagy and cell reprogramming. Cell Mol Life Sci. 2015; 72(9): 1699-713. CrossRef PubMed
  68.  
  69. Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M.Transcriptional and epigenetic regulation of autophagy in aging. Autophagy. 2015; 11(6): 867–80. CrossRef PubMed PubMedCentral
  70.  
  71. Li Z, Song Y, Liu L, Hou N, An X, Zhan D, et al. miR- 199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ. 2015. [doi: 10.1038/cdd.2015.95]. CrossRef  
  72. Wang J, Gong L, Tan Y, Hui R, Wang Y. Hypertensive epigenetics: from DNA methylation to microRNAs. J Hum Hypert. 2015. [doi:10.1038/jhh.2014.132]. CrossRef  
  73. Tyagi SC, Joshua IG. Exercise and nutrition in myocardial matrix metabolism, remodeling, regeneration, epigenetics, microcirculation, and muscle. Can J Physiol Pharmacol. 2014; 92(7): 521–3. CrossRef PubMed
  74.  
  75. Santilli F, Guagnano MT, Vazzana N, La Barba S, Davi G. Oxidative stress drivers and modulators in obesity and cardiovascular disease: from biomarkers to therapeutic approach. Curr Med Chem. 2015; 22(5): 582–95. CrossRef PubMed
  76.  
  77. Das M, Das DK: Resveratrol and cardiovascular health. Mol Aspects Med. 2010; 31(6): 503–12. CrossRef PubMed
  78.  
  79. Suzuki H, et al.: DNA methylation and cancer pathways in gastrointestinal tumors. Pharmacogenomics. 2008; 9(12): 1917–28. CrossRef PubMed
  80.  
  81. Rexhaj E, Pireva A, Paoloni-Giacobino A, Allemann Y, Cerny D, Dessen P, et al. Prevention of vascular dysfunction and arterial hypertension in mice generated by assisted reproductive technologies by addition of melatonin to culture media. Am J Physiol Heart Circ Physiol. 2015; 309(7): 1151-6. CrossRef PubMed
  82.  
  83. Wu Z, Siuda D, Xia N, Reifenberg G, Daiber A, Münzel T, et al. Maternal treatment of spontaneously hypertensive rats with pentaerythritol tetranitrate reduces blood pressure in female offspring. Hypertension. 2015; 65(1): 232–7. CrossRef PubMed
  84.  
  85. Jose PA, Raj D. Gut microbiota in hypertension. Curr Opin Nephrol Hypertens. 2015; 24(5): 403–9. CrossRef PubMed PubMedCentral
  86.  
  87. Stein S, et al.: SIRT1 reduces endothelial activation without affecting vascular function in ApoE−/− mice. Aging (Albany NY). 2010; 2(6): 353–60. CrossRef PubMed PubMedCentral
  88.  
  89. Nikolic D, Rizzo M, Mikhailidis DP, Wong NC, Banach M. An evaluation of RVX-208 for the treatment of atherosclerosis. Expert Opin Investig Drugs. 2015; 24(10): 1389–98. CrossRef PubMed
  90.  
  91. Watson CJ, Horgan S, Neary R, Glezeva N, Tea I, Corrigan N, et al. Epigenetic Therapy for the Treatment of Hypertension-Induced Cardiac Hypertrophy and Fibrosis. J Cardiov Pharmacol Ther. 2016; 21(1): 127–37. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.