Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2017; 63(2): 3-9


ACTIVATION OF TRPV1 BY NITRIC OXIDE DONORS REQUIRES CO-APPLICATION OF SULFHYDRIL-CONTAINING REAGENT

B.R. Sharopov, Y.M. Shuba

    O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz63.02.003


Abstract

Previous studies suggested that polymodal capsaicin-sensitive TRPV1 ion channel could also be a receptor for nitric oxide (NO). However, the evidence for this notion is based on rather indirect experiments, which questions its physiological relevance. The present paper provides an improved method of application of NO donors such as sodium nitroprusside (SNP) in an electrophysiological experiment, implying the simultaneous delivery of sulfhydryl-containing reagents such as L-cysteine (L-Cys) that facilitates the release of NO from a donor substance and allows inducing macroscopic TRPV1- mediated current. We found that external application of 100 μM SNP per se onto dorsal root ganglia (DRG) neurons responsive to capsaicin cannot activate TRPV1 ion channel. In contrast, the application of SNP simultaneously with 100 μM L-Cys induces transmembrane current with features characteristic of TRPV1-mediated one, i.e., inward at command membrane potential (Vcomm) +50 mV, outward at Vcomm -100 mV, and susceptible to blockade with capsazepine, a selective TRPV1 antagonist. At the same time, the application of L-Cys itself evoked no response in conditions tested. To summarize, our work confirms the assumption about the sensitivity of TRPV1 to NO and provides a simple method for further studies of their interaction.

Keywords: TRPV1; nitric oxide; NO donors; L-cysteine; patch clamp

References

  1. Ahern GP, Klyachko VA, Jackson MB. cGMP and Snitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci. 2002; 25: 510-7. CrossRef  
  2. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol. 2001; 3: 193-7. CrossRef PubMed
  3.  
  4. Bredt DS, Snyder SH. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994; 63: 175-95. CrossRef PubMed
  5.  
  6. Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994; 78: 915-8. CrossRef  
  7. Russwurm M, Koesling D. NO activation of guanylyl cyclase. EMBO J. 2004; 23: 4443-50. CrossRef PubMed PubMedCentral
  8.  
  9. Francis SH, Busch JL, Corbin JD, Sibley D. cGMPdependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010; 62: 525-63. CrossRef PubMed PubMedCentral
  10.  
  11. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol. 2005; 6: 150-66. CrossRef PubMed
  12.  
  13. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol. 2006; 2: 596-607. CrossRef PubMed
  14.  
  15. Miyamoto T, Dubin AE, Petrus MJ, Patapoutian A. TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS One. 2009; 4: e7596. CrossRef PubMed PubMedCentral
  16.  
  17. Pingle SC, Matta JA, Ahern GP. Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol. 2007: 155-71. CrossRef PubMed
  18.  
  19. Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov. 2007; 6: 357-72. CrossRef PubMed
  20.  
  21. Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol. 2012; 166: 510-21. CrossRef PubMed PubMedCentral
  22.  
  23. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heatactivated ion channel in the pain pathway. Nature. 1997; 389: 816-24. CrossRef PubMed
  24.  
  25. Lotteau S, Ducreux S, Romestaing C, Legrand C, Van Coppenolle F. Characterization of functional TRPV1 channels in the sarcoplasmic reticulum of mouse skeletal muscle. PLoS One. 2013; 8: e58673. CrossRef PubMed PubMedCentral
  26.  
  27. Lu MJ, Chen YS, Huang HS, Ma MC. Hypoxic preconditioning protects rat hearts against ischemiareperfusion injury via the arachidonate12-lipoxygenase/ transient receptor potential vanilloid 1 pathway. Basic Res Cardiol. 2014; 109: 414. CrossRef PubMed
  28.  
  29. Grossi L, D'Angelo S. Sodium nitroprusside: mechanism of NO release mediated by sulfhydryl-containing molecules. J Med Chem. 2005; 48: 2622-6. CrossRef PubMed
  30.  
  31. Lallemend F, Ernfors P. Molecular interactions underlying the specification of sensory neurons. Trends Neurosci. 2012; 35: 373-81. CrossRef PubMed
  32.   Mistry DK, Garland CJ. Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BK(Ca)) in smooth muscle cells isolated from the rat mesenteric artery. Br J Pharmacol. 1998; 124: 1131-40 CrossRef PubMed PubMedCentral  
  33. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994; 368: 850-3. CrossRef PubMed
  34.  
  35. Delmas P, Hao J, Rodat-Despoix L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci. 2011; 12: 139-53. CrossRef PubMed
  36.  
  37. Yoshimura N, Ogawa T, Miyazato M, Kitta T, Furuta A, Chancellor MB, et al. Neural mechanisms underlying lower urinary tract dysfunction. Korean J Urol. 2014; 55: 81-90. CrossRef PubMed PubMedCentral
  38.  
  39. Subczynski WK, Lomnicka M, Hyde JS. Permeability of nitric oxide through lipid bilayer membranes. Free Radic Res. 1996; 24: 343-9. CrossRef PubMed
  40.  
  41. Nedeianu S, Pali T, Marsh D. Membrane penetration of nitric oxide and its donor S-nitroso-N-acetylpenicillamine: a spin-label electron paramagnetic resonance spectroscopic study. Biochim Biophys Acta. 2004; 1661: 135-43. CrossRef PubMed
  42.  
  43. Shishido SM, Ganzarolli de Oliveira M. Photosensitivity of aqueous sodium nitroprusside solutions: nitric oxide release versus cyanide toxicity. Progress in Reaction Kinetics and Mechanism. 2001; 26: 239–61. CrossRef  
  44. Bradley SA, Steinert JR. Characterisation and comparison of temporal release profiles of nitric oxide generating donors. J Neurosci Methods. 2015; 245: 116-24. CrossRef PubMed PubMedCentral
  45.  
  46. Hall CN, Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide. 2009; 21: 92-103. CrossRef PubMed PubMedCentral
  47.  
  48. Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, et al. Nitric oxide donors: chemical activities and biological applications. Chem Rev. 2002; 102: 1091-134. CrossRef PubMed
  49.  
  50. Miller MR, Megson IL. Recent developments in nitric oxide donor drugs. Br J Pharmacol. 2007; 151: 305-21. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.