| 
 ACTIVATION OF TRPV1 BY NITRIC OXIDE DONORS REQUIRES CO-APPLICATION OF SULFHYDRIL-CONTAINING REAGENTB.R. Sharopov, Y.M. Shuba 
O.O. Bogomoletz Institute of Physiology, National Academy
of Sciences of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz63.02.003 
  
 
 
Abstract
Previous studies suggested that polymodal capsaicin-sensitive
TRPV1 ion channel could also be a receptor for nitric oxide
(NO). However, the evidence for this notion is based on
rather indirect experiments, which questions its physiological
relevance. The present paper provides an improved method
of application of NO donors such as sodium nitroprusside
(SNP) in an electrophysiological experiment, implying the
simultaneous delivery of sulfhydryl-containing reagents such
as L-cysteine (L-Cys) that facilitates the release of NO from
a donor substance and allows inducing macroscopic TRPV1-
mediated current. We found that external application of 100 μM
SNP per se onto dorsal root ganglia (DRG) neurons responsive
to capsaicin cannot activate TRPV1 ion channel. In contrast,
the application of SNP simultaneously with 100 μM L-Cys
induces transmembrane current with features characteristic
of TRPV1-mediated one, i.e., inward at command membrane
potential (Vcomm) +50 mV, outward at Vcomm -100 mV, and
susceptible to blockade with capsazepine, a selective TRPV1
antagonist. At the same time, the application of L-Cys itself
evoked no response in conditions tested. To summarize, our
work confirms the assumption about the sensitivity of TRPV1
to NO and provides a simple method for further studies of
their interaction.
 
Keywords: 
TRPV1; nitric oxide; NO donors; L-cysteine; patch clamp
References
 
Ahern GP, Klyachko VA, Jackson MB. cGMP and Snitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci. 2002; 25: 510-7.
CrossRef.1016/S0166-2236(02)02254-3Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol. 2001; 3: 193-7.
CrossRef
PubMedBredt DS, Snyder SH. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994; 63: 175-95.
CrossRef
PubMedNathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994; 78: 915-8.
CrossRef.1016/0092-8674(94)90266-6Russwurm M, Koesling D. NO activation of guanylyl cyclase. EMBO J. 2004; 23: 4443-50.
CrossRef
PubMed PubMedCentralFrancis SH, Busch JL, Corbin JD, Sibley D. cGMPdependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010; 62: 525-63.
CrossRef
PubMed PubMedCentralHess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol. 2005; 6: 150-66.
CrossRef
PubMedYoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol. 2006; 2: 596-607.
CrossRef
PubMedMiyamoto T, Dubin AE, Petrus MJ, Patapoutian A. TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS One. 2009; 4: e7596.
CrossRef
PubMed PubMedCentralPingle SC, Matta JA, Ahern GP. Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol. 2007: 155-71.
CrossRef.1007/978-3-540-34891-7_9
PubMedSzallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov. 2007; 6: 357-72.
CrossRef
PubMedFernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol. 2012; 166: 510-21.
CrossRef
PubMed PubMedCentralCaterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heatactivated ion channel in the pain pathway. Nature. 1997; 389: 816-24.
CrossRef
PubMedLotteau S, Ducreux S, Romestaing C, Legrand C, Van Coppenolle F. Characterization of functional TRPV1 channels in the sarcoplasmic reticulum of mouse skeletal muscle. PLoS One. 2013; 8: e58673.
CrossRef
PubMed PubMedCentralLu MJ, Chen YS, Huang HS, Ma MC. Hypoxic preconditioning protects rat hearts against ischemiareperfusion injury via the arachidonate12-lipoxygenase/ transient receptor potential vanilloid 1 pathway. Basic Res Cardiol. 2014; 109: 414.
CrossRef
PubMedGrossi L, D'Angelo S. Sodium nitroprusside: mechanism of NO release mediated by sulfhydryl-containing molecules. J Med Chem. 2005; 48: 2622-6.
CrossRef
PubMedLallemend F, Ernfors P. Molecular interactions underlying the specification of sensory neurons. Trends Neurosci. 2012; 35: 373-81.
CrossRef
PubMedMistry DK, Garland CJ. Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BK(Ca)) in smooth muscle cells isolated from the rat mesenteric artery. Br J Pharmacol. 1998; 124: 1131-40
CrossRef
PubMed PubMedCentralBolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994; 368: 850-3.
CrossRef
PubMedDelmas P, Hao J, Rodat-Despoix L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci. 2011; 12: 139-53.
CrossRef
PubMedYoshimura N, Ogawa T, Miyazato M, Kitta T, Furuta A, Chancellor MB, et al. Neural mechanisms underlying lower urinary tract dysfunction. Korean J Urol. 2014; 55: 81-90.
CrossRef
PubMed PubMedCentralSubczynski WK, Lomnicka M, Hyde JS. Permeability of nitric oxide through lipid bilayer membranes. Free Radic Res. 1996; 24: 343-9.
CrossRef
PubMedNedeianu S, Pali T, Marsh D. Membrane penetration of nitric oxide and its donor S-nitroso-N-acetylpenicillamine: a spin-label electron paramagnetic resonance spectroscopic study. Biochim Biophys Acta. 2004; 1661: 135-43.
CrossRef
PubMedShishido SM, Ganzarolli de Oliveira M. Photosensitivity of aqueous sodium nitroprusside solutions: nitric oxide release versus cyanide toxicity. Progress in Reaction Kinetics and Mechanism. 2001; 26: 239–61.
CrossRefBradley SA, Steinert JR. Characterisation and comparison of temporal release profiles of nitric oxide generating donors. J Neurosci Methods. 2015; 245: 116-24.
CrossRef
PubMed PubMedCentralHall CN, Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide. 2009; 21: 92-103.
CrossRef
PubMed PubMedCentralWang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, et al. Nitric oxide donors: chemical activities and biological applications. Chem Rev. 2002; 102: 1091-134.
CrossRef
PubMedMiller MR, Megson IL. Recent developments in nitric oxide donor drugs. Br J Pharmacol. 2007; 151: 305-21.
CrossRef
PubMed PubMedCentral |