MUSCLE FATIGUE: FACTORS OF DEVELOPMENT AND WAYS OF CORRECTION
T.Yu. Matvienko1, D.A. Zavodovskyi1, D.N. Nozdrenko1, I.V. Mishchenko2, O.P. Motuziuk2, K.I. Bogutska1, Yu.P. Sklyarov3, Yu.I. Prylutskyy1
- Taras Shevchenko National University of Kyiv; е-mail:
prylut@ukr.net;
- Lesya Ukrainka Eastern European National University,
Lutsk;
- O.O. Bogomolets National Medical University, Kyiv
DOI: https://doi.org/10.15407/fz63.01.095
Abstract
The data regarding the analysis of the physiological and
biochemical mechanisms of muscle fatigue and ways to
prevent it are summarized. The effect of the most common
endogenous and exogenous antioxidants in the biochemical
processes in muscle fatigue was analyzed. It is shown that
biocompatible, non-toxic water-soluble C60 fullerenes, which
possess powerful antioxidative properties, promise great
prospects in the correction of skeletal muscle fatigue caused
by the destructive action of free radicals.
Keywords:
skeletal muscles; muscle fatigue; free radicals; C60 fullerene.
References
- Tipton MC. Exercise physiology: people and ideas. Amsterdam: Elsevier. 1993; 510 p.
PubMedCentral
- Mosso A. Fatigue (1904). Whitefish: Kessinger Publishing. 2008; 348 p.
- Dittner AJ, Wessely SC, Brown RG. The assessment of fatigue: a practical guide for clinicians and researchers. J Psychosom Res. 2004; 56(2): 157-70.
CrossRef
- Boyas S, Guervel A. Neuromuscular fatigue in healthy muscle: underlying factors and adaptation mechanisms. Ann Phys Rehabil Med. 2011; 54(2): 88-108.
CrossRef
PubMed
- Kostyukov AI, Day S, Hellstrom F, Radovanovic S, Ljubisavljevic M, Windhorst U, Johansson H. Fatiguerelated changes in electromyogram activity of cat gastrocnemius during frequency-modulated efferent stimulation. Neurosci. 2000; 97(4): 801-9.
CrossRef
- Kostyukov AI, Kalezic I, Serenko SG, Ljubisavljevic M, Windhorst U, Johansson H. Spreading of fatiguerelated effects from active to inactive parts in the medial gastrocnemius muscle of the cat. Eur J Appl Physiol. 2002; 86(4): 295-307.
CrossRef
PubMed
- Ervilha UF, Farina D, Arendt-Nielsen L, Graven-Nielsen T. Experimental muscle pain changes motor control strategies in dynamic contractions. Exp Brain Res. 2005; 164(2): 215-24.
CrossRef
PubMed
- Harris RC, Sale C. Beta-alanine supplementation in highintensity exercise. Med Sport Sci. 2012; 59: 1-17.
CrossRef
PubMed
- Kalezic I, Bugaychenko LA, Kostyukov AI, Pilyavskii AI, Ljubisavljevic M, Windhorst U. Fatigue-related depression of the feline monosynaptic gastrocnemiussoleus reflex. J Physiol. 2004; 556(Pt1): 283-96.
CrossRef
PubMed PubMedCentral
- Lehedza AV, Gorkovenko AV, Vereshchaka IV, Dornowski M, Kostyukov AI. Comparative analysis of electromyographic muscle activity of the human hand during cyclic turns of isometric effort vector of wrist in opposite directions. Fiziol Zh. 2015; 61(2): 3-14.
CrossRef
- Williams WO. Huxley's model of muscle contraction with compliance. J Elasticity. 2011; 105(1): 365-80.
CrossRef
- Cooke R. Modulation of the actomyosin interaction during fatigue of skeletal muscle. Muselé Nerve. 2007; 36(6): 756-77.
CrossRef
PubMed
- Pate E, Bhimani M, Franks-Skiba K, Cooke R. Reduced effect of pH on skitined rabbit psoas muscle mechanics at high temperatures: implications for fatigue. J Physiol. 1995; 486(3): 689-94.
CrossRef
PubMed PubMedCentral
- Debold EP, Beck SE, Warshaw DM. The effect of low pH on single skeletal muscle myosin mechanics and kinetics. Am J Physiol Cell Physiol. 2008; 295(1): 173-9.
CrossRef
PubMed PubMedCentral
- Walter G, Vandenborne K, Elliott M, Leigh JS. In vivo ATP synthesis rates in single human muscles during high intensity exercise. J Physiol. 1999; 519(Pt3): 901-10.
CrossRef
PubMed PubMedCentral
- Westerblad H, Allen DG, Lännergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci. 2002; 17: 17-21.
PubMed
- Dahlstedt AJ, Katz A, Westerblad H. Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice. J Physiol. 2001; 533(2): 379-88.
CrossRef
PubMed PubMedCentral
- Dahlstedt AJ, Katz A, Wieringa B, Westerblad H. Is creatine kinase responsible for fatigue? Studies of skeletal muscle deficient of creatine kinase. FASEB J. 2000; 14(7): 982-90.
PubMed
- Fryer MW, Owen VJ, Lamb GD, and Stephenson DG. Effects of creatine phosphate and Pi on Ca2+ movements and tension development in rat skinned skeletal muscle fibres. J Physiol. 1995; 482(1): 123-40.
CrossRef
PubMed PubMedCentral
- Allen DG, Lännergren J, Westerblad H. Muscle cell function during prolonged activity: cellular mechanisms of fatigue. Exp Physiol. 1995; 80(4): 497-527.
CrossRef
PubMed
- Ahern GP, Laver DR. ATP inhibition and rectification of a Ca2+-activated anion channel in sarcoplasmic reticulum of skeletal muscle. Biophys J. 1998; 74(5): 2335-51.
CrossRef
- Westerblad H, Bruton JD, Lännergren J. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol. 1997; 500(Pt1): 193-204.
CrossRef
PubMed PubMedCentral
- Wiseman RW, Beck TW, Chase PB. Effect of intracellular pH on force development depends on temperature in intact skeletal muscle from mouse. Am J Physiol Cell Physiol 1996; 271(3 Pt1): 878-86.
- Bangsbo J, Madsen K, Kiens B, Richter EA. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol. 1996; 495(Pt2): 587-96.
CrossRef
PubMed PubMedCentral
- Nelson DL, Lehninger MC. Principles of biochemistry. New York: WH Freeman and company, 2008; 1158 p.
- Greer F, Friars D, Graham TE. Comparison of caffeine and theophylline ingestion: exercise metabolism and endurance. J Appl Physiol. 2000; 89(5): 1837-44.
PubMed
- Barreiro E, Gea J, Di Falco M, Kriazhev L, James S, Hussain SN. Protein carbonyl formation in the diaphragm. Am J Respir Cell Mol Biol. 2005; 32(1): 9-17.
CrossRef
PubMed
- Tsakiris S, Parthimos T, Parthimos N, Tsakiris T, Schulpis KH. The beneficial effect of L-cysteine supplementation on DNA oxidation induced by forced training. Pharmacol Res. 2006; 53(4): 386-90.
CrossRef
PubMed
- Vasilaki A, Mansouri A, Remmen H, van der Meulen, JH, Larkin L, Richardson AG, McArdle A, Faulkner JA, Jackson MJ. Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell. 2006; 5(2): 109-17.
CrossRef
PubMed
- Hasegawa A, Suzuki S, Matsumoto Y, Okubo T. In vivo fatiguing contraction of rat diaphragm produces hydroxyl radicals. Free Radic Biol Med. 1997; 22(1-2): 349-54.
CrossRef
- Stamler J, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001; 81(1): 209-37.
PubMed
- Abraham RZ, Miller CC, Reid MB. The contractile response to nitric oxide (NO) varies among skeletal muscle. Endothelium. 1995; 3: 108.
- Nijs J, Meeus M, McGregor NR, Meeusen R, de Schutter G, van Hoof E, de Meirleir K. Chronic fatigue syndrome: exercise performance related to immune dysfunction. Med Sci Sports Exerc. 2005; 37(10): 1647-54.
CrossRef
PubMed
- McIver K L, Evans C, Kraus RM, Ispas L, Sciotti VM, Hickner RC. NO-mediated alterations in skeletal muscle nutritive blood flow and lactate metabolism in fibromyalgia. Pain. 2005; 120(1-2): 161-9.
CrossRef
PubMed
- Andrade FH, Reid MB, Allen DG, Westerblad H. Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from mouse. J Physiol. 1998; 509(Pt2): 565-75.
CrossRef
PubMed PubMedCentral
- Leeuwenburgh C, Hollander J, Leichtweis S, Griffiths M, Gore M, Ji LL. Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am J Physiol Regul Integr Comp Physiol. 1997; 272 (1 Pt2): 363-9.
- Moopanar TR, Allen DG. Reactive oxygen species reduce myofibrillar calcium sensitivity in fatiguing mouse skeletal muscle at 37°C. J Physiol. 2005; 564(Pt1): 189-99.
CrossRef
PubMed PubMedCentral
- Kanter M. Free radicals, exercise and antioxidant supplementation. Proc Nutr Soc. 1998; 57(1): 9-13.
CrossRef
PubMed
- Ji LL. Exercise sport science reviews: Exercise and oxidative stress: Role of the cellular antioxidant systems. Exerc Sport Sci Rev. 1995; 23(1): 135-66.
PubMed
- Clanton TL, Zuo L, Klawitter P. Oxidants and skeletal muscle function: physiologic and pathophysiologic implications. Proc Soc Exp Biol Med. 1999; 222(3): 253-62.
CrossRef
PubMed
- Ji LL. Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med. 2000; 222(3): 283-92.
CrossRef
- Katz A, Hernández A, Caballero DM, Briceno JF, Amezquita LV, Kosterina N, Bruton JD, Westerblad H. Effects of N-acetylcysteine on isolated mouse skeletal muscle: contractile properties, temperature dependence, and metabolism. Pflugers Arch. 2014; 466(3): 577-85.
CrossRef
PubMed
- Trice I, Haymes EM. Effects of caffeine ingestion on exerciseinduced changes during high-intensity, intermittent exercise. Int J Sport Nutr. 1995; 5(1): 37-44.
CrossRef
PubMed
- Pasman WJ, van Baak MA, Jeukendrup AE. The effect of different dosages of caffeine on endurance performance time. Int J Sports Med. 1995; 16(4): 225-30.
CrossRef
PubMed
- Graham TE, Spriet LL. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol. 1995; 78(3): 867-4.
PubMed
- Mohr T, van Soeren M, Graham TE. Caffeine ingestion and metabolic responses of tetraplegic humans during electrical cycling. J Appl Physiol. 1998; 85(3): 979-85.
PubMed
- Cohen BS, Nelson AG, Prevost MC. Effects of caffeine ingestion on endurance racing in heat and humidity. Eur J Appl Physiol. 1996; 73(3-4): 358-63.
CrossRef
- Jackman M, Wendling P, Friars D. Metabolic, catecholamine, and endurance responses to caffeine during intense exercise. J Appl Physiol. 1996; 81(4): 1658-63.
PubMed
- Tarnopolsky MA, Cupido C. Caffeine potentiates low frequency skeletal muscle force in habitual and nonhabitual caffeine consumers. J Appl Physiol. 2000; 89(5): 1719-24.
PubMed
- Raguso CA, Coggan AR, Sidossis LS. Effect of theophylline on substratemetabolismduring exercise. Metabolism. 1996; 45(9): 1153-60.
CrossRef
- Graham TE, Helge JW, MacLean DA. Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J Physiol. 2000; 529(Pt3): 837-47.
CrossRef
PubMed PubMedCentral
- Laurent D, Scheider KE, Prusaczyk WK. Effects of caffeine on muscle glycogen utilization and the neuroendocrine axis during exercise. J Clin Endocrinol Metab. 2000; 85(6): 2170-5.
CrossRef
- Chesley A, Howlett RA, Heigenhauser JF. Regulation of muscle glycogenolytic flux during intense aerobic exercise after caffeine ingestion. Am J Physiol. 1998; 275(2 Pt2): 596-603.
- MacIntosh BR, Wright BM. Caffeine ingestion and performance of a 1500 meter swim. Can J Appl Physiol. 1995; 20(2): 168-77.
CrossRef
PubMed
- Kalmar JM, Cafarelli E. Effects of caffeine on neuromuscular fatigue. J Appl Physiol. 1999; 87(2): 801-8.
PubMed
- Tullberg M, Alstergren PJ, Ernberg MM. Effects of lowpower laser exposure on masseter muscle pain and microcirculation. Pain. 2003; 105(1-2): 89-96.
CrossRef
- Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R. Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B. 2009; 95(2): 89-92.
CrossRef
PubMed
- Avni D, Levkovitz S, Maltz L, Oron U. Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg. 2005; 23(3): 273-7.
CrossRef
PubMed
- Rizzi CF, Mauriz JL, Freitas Correa DS. Effects of lowlevel laser therapy (LLLT) on the nuclear factor (NF)- kappaB signaling pathway in traumatized muscle. Lasers Surg Med. 2006; 38(7): 704-13.
CrossRef
PubMed
- Lopes-Martins RA, Marcos RL, Leonardo PS. Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol. 2006; 101(1): 283-8.
CrossRef
PubMed
- Leal Junior EC, Lopes-Martins RA, de Almeida P, Ramos L, Iversen VV, Bjordal JM. Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol. 2010; 108(6): 1083-8.
CrossRef
PubMed
- Mach J, Midgley AW, Dank S, Grant R, Bentley DJ. The effect of antioxidant supplementation on fatigue during exercise: potential role for NAD+(H). Nutrients. 2010; 2(3): 319-29.
CrossRef
PubMed PubMedCentral
- Prylutska SV, Grynyuk II, Matyshevska OP, Prylutskyy YuI, Ritter U, Scharff P. Anti-oxidant properties of C60 fullerenes in vitro. Fullerenes, Nanotubes, Carbon Nanostruct. 2008; 16(5-6): 698-705.
CrossRef
- Ritter U, Prylutskyy YuI, Evstigneev MP, Davidenko NA, Cherepanov VV, Senenko AI, Marchenko OA, Naumovets AG. Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fullerenes, Nanotubes, Carbon Nanostruct. 2015; 23(6): 530-4.
CrossRef
- Sun T, Xu Z. Radical scavenging activities of alpha-alanine C60 adduct. Bioorg Med Chem Lett. 2006; 16(14): 3731-4.
CrossRef
PubMed
- Lai HS, Chen WJ, Chiang LY. Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in dogs. World J Surg. 2000; 24(4): 450-4.
CrossRef
PubMed
- Chen YW, Hwang KC, Yen CC, Lai YL. Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol Regul Integr Comp Physiol. 2004; 287(1): 21-6.
CrossRef
PubMed
- Lai YL, Murugan P, Hwang KC. Fullerene derivative attenuates ischemia-reperfusion-induced lung injury. Life Sci. 2003; 72(11): 1271-8.
CrossRef
- Cataldo F, Da Ros T. Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Berlin: Springer. 2008; 408 p.
CrossRef
- Wilson SR. Biological aspects of fullerenes. Fullerenes: Chemistry, Physics and Technology. 2000; 437-65.
- Andreichenko KS, Prylutska SV, Medynska KO, Bogutska KI, Nurishchenko NE, Prylutskyy YuI, Ritter U, Scharff P. Effect of fullerene C60 on ATPase activity and superprecipitation of skeletal muscle actomyosin. Ukr Biochem J. 2013; 85(2): 20-6.
CrossRef
- Ashcroft JM, Tsyboulski DA, Hartman KB. Fullerene C60 immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun. 2006; 28: 3004-6.
CrossRef
PubMed
- Prylutska SV, Burlaka AP, Prylutskyy YuI. Pristine C60 fullerenes inhibit the rate of tumor growth and metastasis. Exp Oncol. 2011; 33(3): 162-4.
PubMed
- Prylutska SV, Burlaka AP, Klymenko PP. Using watersoluble C60 fullerenes in anticancer therapy. Cancer Nanotechnol. 2011; 2(1-6): 105-10.
CrossRef
PubMed PubMedCentral
- Panchuk RR, Prylutska SV, Chumak VV, Skorokhyd NR, Lehka LV, Evstigneev MP, Prylutskyy YuI, Berger W, Heffeter P, Scharff P, Ritter U, Stoika RS. Application of C60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. J Biomed Nanotechnol. 2015; 11(7): 1139-52.
CrossRef
PubMed
- Halenova TI, Vareniuk IM, Roslova NM, Dzerzhynsky ME, Savchuk OM, Ostapchenko LI, Prylutskyy YuI, Ritter U, Scharff P. Hepatoprotective effect of orally applied water-soluble pristine C60 fullerene against CCl4-induced acute liver injury in rats. RSC Adv. 2016; 6(102): 100046-55.
CrossRef
- Mori T, Takada H, Ito S. Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology. 2006; 225(1): 48-54.
CrossRef
PubMed
- Wang IC, Tai LA, Lee DD. C60 and water-soluble fullerene derivatives as antioxidants against radicals-initiated lipid peroxidation. J Med Chem. 1999; 42(22): 4614-20.
CrossRef
PubMed
- Gharbi N, Pressac M, Hadchouel M. Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005; 5(12): 2578-85.
CrossRef
PubMed
- Xiao L, Takada H, Gan X, Miwa N. The water-soluble fullerene derivative «radicalsponge» exerts cytoprotective action against UV irradiation but not visible-lightcatalyzed cytotoxicity in human skin keratinocytes. Bioorg Med Chem Lett. 2006; 16(5): 1590-5.
CrossRef
PubMed
|