Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2015; 61(1): 91-101


THE ROLE OF UNCOUPLING PROTEINS IN MECHANISMS OF PROTECTION FROM OXIDATIVE STRESS

Iu.V. Hoshovs’ka

    Bogomoletz Institute of physiology NAS of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz61.01.091

Abstract

Uncoupling proteins, UCPs, are located in the inner mitochondrial membrane and catalize proton leak across the inner mitochondrial membrane. While UCP1 from brown adipose tissue (BAT) dissipates energy of proton gradient as heat mediating process of thermogenesis, the function of cardiac isoforms of UCPs is still debated. Since the content of UCPs in heart tissue is much lesser then in BAT mild uncoupling of respiratory chain by UCPs might regulate membrane potential of cardiac mitochondria, preventing excessive production of reactive oxygen species. The review is focused on own and literature evidences suggesting the protective role of UCPs activation from oxidative stress under ischemia-reperfusion conditions and aging. Participation of UCPs in endogenous mechanisms of cardioprotection induced by ischemic preconditioning is discussed.

Keywords: uncoupling proteins; oxidative stress; ischemia; mitochondria; preconditioning

References

  1. Echtay K. Mitochondrial uncoupling proteins – What is their physiological role? Free Rad Biol Med. 2007;43:1351–71.
  2.  
  3. Chen Y-R, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res. 2014;114(3):524–37. CrossRef PubMed PubMedCentral
  4.  
  5. Halestrap A. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006;34(2):232–7. CrossRef PubMed
  6.  
  7. McLeod CJ, Aziz A, Hoyt RF, McCoy JP, Sack MN. Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J Biol Chem. 2005;280(39):33470–6. CrossRef PubMed
  8.  
  9. Mehta SL, Li PA. Neuroprotective role of mitochondrial uncoupling protein 2 in cerebral stroke. J Cereb Blood Flow Metab. 2009;29(6):1069–78. CrossRef PubMed
  10.  
  11. Thomas C, Mackey MM, Diaz AA, Cox DP. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep. 2009;14(3):102–8. CrossRef PubMed
  12.  
  13. Arora S, Vaishya R, Dabla P, Singh B. NAD (P) H oxidases in coronary artery disease. Adv Clin Chem. 2010;50:65–86. CrossRef  
  14. Bae YS, Oh H, Rhee SG, Do Yoo Y. Regulation of reactive oxygen species generation in cell signaling. Mol Cells. 2011;32(6):491–509. CrossRef PubMed PubMedCentral
  15.  
  16. Robert A, Robert L. Xanthine oxido-reductase, free radicals and cardiovascular disease. Crit Rev Pathol Oncol Res 2014 20 1 1. 2013;10.
  17.  
  18. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(2):335–44. CrossRef PubMed PubMedCentral
  19.  
  20. Mikhaĭlov V, Mazurik V, Burlakova E. [Signal function of the reactive oxygen species in regulatory networks of the cell reaction to damaging effects: contribution of radiosensitivity and genome instability]. Radiatsionnaia Biol Radioecol Akad Nauk. 2002;43(1):5–18.
  21.  
  22. Das D, Maulik N. Conversion of death signal into survival signal by redox signaling. Biochem Mosc. 2004;69(1):10–7. CrossRef  
  23. Gutierrez J, Ballinger SW, Darley-Usmar VM, Landar A. Free radicals, mitochondria, and oxidized lipids The emerging role in signal transduction in vascular cells. Circ Res. 2006;99(9):924–32.
  24.  
  25. Guidarelli A, Sciorati C, Clementi E, Cantoni O. Peroxynitrite mobilizes calcium ions from ryanodine-sensitive stores, a process associated with the mitochondrial accumulation of the cation and the enforced formation of species mediating cleavage of genomic DNA. Free Radic Biol Med. 2006;41(1):154–64. CrossRef PubMed
  26.  
  27. Pinkus R, Weiner LM, Daniel V. Role of oxidants and antioxidants in the induction of AP-1, NF-κB, and glutathione S-transferase gene expression. J Biol Chem. 1996;271(23):13422–9. CrossRef PubMed
  28.  
  29. Petrishchev N, Shliakhto E, Tsyrlin V, Vlasov T, Syrenskiĭ A, Galagudza M. [The role of oxygen free radicals in the mechanisms of local and distant ischemic myocardial preconditioning]. Vestn Ross Akad Meditsinskikh Nauk Akad Meditsinskikh Nauk. 2005;(8):10–5.
  30.  
  31. Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1998 Jul 17;273(29):18092–8.
  32.  
  33. Lesnefsky EJ, Hoppel CL. Ischemia–reperfusion injury in the aged heart: role of mitochondria. Arch Biochem Biophys. 2003;420(2):287–97. CrossRef  
  34. Lesnefsky EJ, Gudz TI, Migita CT, Ikeda-Saito M, Hassan MO, Turkaly PJ, et al. Ischemic injury to mitochondrial electron transport in the aging heart: damage to the iron– sulfur protein subunit of electron transport complex III. Arch Biochem Biophys. 2001;385(1):117–28. CrossRef PubMed
  35.  
  36. Lesnefsky EJ, Gallo DS, Ye J, Whittingham TS, Lust WD. Aging increases ischemia-reperfusion injury in the isolated, buffer-perfused heart. J Lab Clin Med. 1994;124(6):843–51.
  37.  
  38. Bouillaud F, Weissenbach J, Ricquier D. Complete cDNAderived amino acid sequence of rat brown fat uncoupling protein. J Biol Chem. 1986;261(4):1487–90.
  39.  
  40. Krauss S, Zhang C-Y, Lowell BB. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol. 2005;6(3):248–61. CrossRef PubMed
  41.  
  42. Cannon B, Shabalina IG, Kramarova TV, Petrovic N, Nedergaard J. Uncoupling proteins: a role in protection against reactive oxygen species-or not? Biochim Biophys Acta BBA-Bioenerg. 2006;1757(5):449–58. CrossRef PubMed
  43.  
  44. Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet. 1997;15(3):269–72. CrossRef PubMed
  45.  
  46. Gimeno RE, Dembski M, Weng X, Deng N, Shyjan AW, Gimeno CJ, et al. Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes. 1997;46(5):900–6. CrossRef PubMed
  47.  
  48. Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K. Uncoupling proteins in human heart. The Lancet. 2004;364(9447):1786–8. CrossRef  
  49. Roshon MJ, Kline JA, Thornton LR, Watts JA. Cardiac UCP2 expression and myocardial oxidative metabolism during acute septic shock in the rat. Shock Augusta Ga. 2003 Jun;19(6):570–6.
  50.  
  51. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 1997;408(1):39–42. CrossRef  
  52. Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB. UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Commun. 1997 Jun 9;235(1).
  53.  
  54. Hidaka S, Kakuma T, Yoshimatsu H, Sakino H, Fukuchi S, Sakata T. Streptozotocin treatment upregulates uncoupling protein 3 expression in the rat heart. Diabetes. 1999;48(2):430–5. CrossRef PubMed
  55.  
  56. Ježek P, Žáčková M, Řeháková Z, Růžička M, Borecký J, Škobisová E, et al. Existence of uncoupling protein-2 antigen in isolated mitochondria from various tissues. FEBS Lett. 1999;455(1):79–82. CrossRef  
  57. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. CrossRef PubMed
  58.  
  59. Schrauwen P, Hoeks J, Schaart G, Kornips E, Binas B, Van De Vusse GJ, et al. Uncoupling protein 3 as a mitochondrial fatty acid anion exporter. FASEB J Off Publ Fed Am Soc Exp Biol. 2003 Dec;17(15):2272–4.
  60.  
  61. Stuart JA, Brindle KM, Harper JA, Brand MD. Mitochondrial proton leak and the uncoupling proteins. J Bioenerg Biomembr. 1999;31(5):517–24. CrossRef PubMed
  62.  
  63. Lombardi A, Grasso P, Moreno M, de Lange P, Silvestri E, Lanni A, et al. Interrelated influence of superoxides and free fatty acids over mitochondrial uncoupling in skeletal muscle. Biochim Biophys Acta BBA-Bioenerg. 2008;1777(7):826–33. CrossRef PubMed
  64.  
  65. Jabůrek M, Var̆echa M, Gimeno RE, Dembski M, Jez̆ek P, Zhang M, et al. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J Biol Chem. 1999;274(37):26003–7. CrossRef PubMed
  66.  
  67. Himms-Hagen J, Harper M-E. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med. 2001;226(2):78–84.
  68.  
  69. Esteves TC, Brand MD. The reactions catalysed by the mitochondrial uncoupling proteins UCP2 and UCP3. Biochim Biophys Acta BBA-Bioenerg. 2005;1709(1):35–44. CrossRef PubMed
  70.  
  71. Simonyan RA, Skulachev VP. Thermoregulatory uncoupling in heart muscle mitochondria: involvement of the ATP/ADP antiporter and uncoupling protein. FEBS Lett. 1998;436(1):81–4. CrossRef  
  72. Skulachev VP. Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta. 1998 Feb 25;1363(2):100–24.
  73.  
  74. Brand MD, Buckingham JA, Esteves TC, Green K, Lambert AJ, Miwa S, et al. Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. London; Portland on behalf of The Biochemical Society; 1999; 2004. p. 203–14.
  75.  
  76. Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, et al. Superoxide activates mitochondrial  uncoupling proteins. Nature. 2002;415(6867):96–9. CrossRef PubMed
  77.  
  78. Murphy MP, Echtay KS, Blaikie FH, Asin-Cayuela J, Cochemé HM, Green K, et al. Superoxide Activates Uncoupling Proteins by Generating Carbon-centered Radicals and Initiating Lipid Peroxidation Studies Using A Mitochondria-Targeted Spin Trap Derived From Α-PhenylN-Tert-Butylnitrone. J Biol Chem. 2003;278(49):48534–45. CrossRef PubMed
  79.  
  80. Hoshovs'ka IV, Lisovyi OO, Shymans'ka TV, Sahach VF. [UCP2 and UCP3 gene expression, heart function and oxygen cost of myocardial work changes during aging and ischemia-reperfusion]. Fiziolohichnyi Zhurnal Kiev Ukr 1994. 2009;55(3).
  81.  
  82. Tereshin EV. [A role of fatty acids in the development of oxidative stress in aging. A hypothesis]. Adv Gerontol Uspekhi Gerontol Ross Akad Nauk Gerontol Obshchestvo. 2007;20(1).
  83.  
  84. Murray AJ, Cole MA, Lygate CA, Carr CA, Stuckey DJ, Little SE, et al. Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol. 2008;44(4):694–700. CrossRef PubMed
  85.  
  86. Rolfe DF, Hulbert AJ, Brand MD. Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat. Biochim Biophys Acta. 1994 Dec 30;1188(3):405–16.
  87.  
  88. Serviddio G, Bellanti F, Romano AD, Tamborra R, Rollo T, Altomare E, et al. Bioenergetics in aging: mitochondrial proton leak in aging rat liver, kidney and heart. Redox Rep Commun Free Radic Res. 2007;12(1):91–5. CrossRef PubMed
  89.  
  90. Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem. 2000 May 26;275(21):16258–66.
  91.  
  92. Lu Z, Sack MN. ATF-1 is a hypoxia-responsive transcriptional activator of skeletal muscle mitochondrial-uncoupling protein 3. J Biol Chem. 2008;283(34):23410–8. CrossRef PubMed PubMedCentral
  93.  
  94. Horimoto M, Fülöp P, Derdák Z, Wands JR, Baffy G. Uncoupling protein‐2 deficiency promotes oxidant stress and delays liver regeneration in mice. Hepatology. 2004;39(2):386–92. CrossRef PubMed
  95.  
  96. Krauss S, Zhang C-Y, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST, et al. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic β cell dysfunction. J Clin Invest. 2003;112(12):1831–42. CrossRef PubMed PubMedCentral
  97.  
  98. Derdak Z, Mark NM, Beldi G, Robson SC, Wands JR, Baffy G. The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res. 2008;68(8):2813–9. CrossRef PubMed PubMedCentral
  99.  
  100. Horimoto M, Resnick MB, Konkin TA, Routhier J, Wands JR, Baffy G. Expression of uncoupling protein-2 in human colon cancer. Clin Cancer Res. 2004;10(18):6203–7. CrossRef PubMed
  101.  
  102. Kim H-S, Park K-G, Koo TB, Huh S, Lee I-K. The modulating effects of the overexpression of uncoupling protein 2 on the formation of reactive oxygen species in vascular cells. Diabetes Res Clin Pract. 2007;77(3):S46–S48.
  103.  
  104. Bugger H, Guzman C, Zechner C, Palmeri M, Russell KS, Russell III RR. Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol. 2011;67(6):1381–8. CrossRef PubMed PubMedCentral
  105.  
  106. Brennan JP, Berry RG, Baghai M, Duchen MR, Shattock MJ. FCCP is cardioprotective at concentrations that cause mitochondrial oxidation without detectable depolarisation. Cardiovasc Res. 2006;72(2):322–30. CrossRef PubMed
  107.  
  108. Ganote CE, Armstrong SC. Effects of CCCP-induced mitochondrial uncoupling and cyclosporin A on cell volume, cell injury and preconditioning protection of isolated rabbit cardiomyocytes. J Mol Cell Cardiol. 2003;35(7):749–59. CrossRef  
  109. Sedlic F, Sepac A, Pravdic D, Camara AK, Bienengraeber M, Brzezinska AK, et al. Mitochondrial depolarization underlies delay in permeability transition by preconditioning with isoflurane: roles of ROS and Ca2+. Am J Physiol-Cell Physiol. 2010;299(2):C506–C515.
  110.  
  111. Brand MD, Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2005;2(2):85–93. CrossRef PubMed
  112.  
  113. Simkhovich BZ, Marjoram P, Poizat C, Kedes L, Kloner RA. Brief episode of ischemia activates protective genetic program in rat heart: a gene chip study. Cardiovasc Res. 2003 Aug 1;59(2):450–9.
  114.  
  115. Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, Kapoun AM, et al. Altered patterns of gene expression in response to myocardial infarction. Circ Res. 2000 May 12;86(9):939–45.
  116.  
  117. Bo H, Wang Y, Li H, Zhao J, Zhang H, Tong C. Endurance training attenuates the bioenergetics alterations of rat skeletal muscle mitochondria submitted to acute hypoxia: role of ROS and UCP3. Sheng Li Xue BaoActa Physiol Sin. 2008;60(6):767–76.
  118.  
  119. Hoshovs'ka IV, Lisovyi OO, Shymans'ka TV, Sahach VF. [UCP2 and UCP3 gene expression, heart function and oxygen cost of myocardial work changes during aging and ischemia-reperfusion]. Fiziolohichnyi Zhurnal Kiev Ukr 1994. 2009;55(3).
  120.  
  121. Safari F, Anvari Z, Moshtaghioun S, Javan M, Bayat G, Forosh SS, et al. Differential expression of cardiac uncoupling proteins 2 and 3 in response to myocardial ischemia-reperfusion in rats. Life Sci. 2014;98(2):68–74. CrossRef PubMed
  122.  
  123. Zhang C-Y, Parton LE, Ye CP, Krauss S, Shen R, Lin C-T, et al. Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity-and high glucose-induced β cell dysfunction in isolated pancreatic islets. Cell Metab. 2006;3(6):417–27. CrossRef PubMed
  124.  
  125. Hoshovs'ka IV, Shymans'ka TV, Sahach VF. [Effect of UCP2 activity inhibitor genipin on heart function of aging rats]. Fiziolohichnyi Zhurnal Kiev Ukr 1994. 2009;55(5).
  126.  
  127. Lu Z, Sack MN. ATF-1 is a hypoxia-responsive transcriptional activator of skeletal muscle mitochondrialuncoupling protein 3. J Biol Chem. 2008;283(34):23410–8. CrossRef PubMed PubMedCentral
  128.  
  129. Nobori K, Ito H, Tamamori-Adachi M, Adachi S, Ono Y, Kawauchi J, et al. ATF3 inhibits doxorubicin-induced apoptosis in cardiac myocytes: a novel cardioprotective role of ATF3. J Mol Cell Cardiol. 2002;34(10):1387–97.
  130.  
  131. Nordlie MA, Wold LE, Simkhovich BZ, Sesti C, Kloner RA. Molecular aspects of ischemic heart disease: ischemia/ reperfusion–induced genetic changes and potential applications of gene and RNA interference therapy. J Cardiovasc Pharmacol Ther. 2006;11(1):17–30. CrossRef PubMed
  132.  
  133. Zhang C, Xie Y, Chen P, Hong X, Xiao Z, Ma Y, et al. [Nuclear factor kappa B signal transduction in macrophages during hypoxia: reactive oxygen species generation]. Sheng Li Xue BaoActa Physiol Sin. 2004;56(4):515–20.
  134.  
  135. Cortez–Pinto H, Lin HZ, Yang SQ, da Costa SO, Diehl AM. Lipids up-regulate uncoupling protein 2 expression in rat hepatocytes. Gastroenterology. 1999;116(5):1184–93. CrossRef  
  136. Kim H-S, Park K-G, Koo TB, Huh S, Lee I-K. The modulating effects of the overexpression of uncoupling protein 2 on the formation of reactive oxygen species in vascular cells. Diabetes Res Clin Pract. 2007;77(3):S46–S48.
  137.  
  138. Ebert BL, Bunn HF. Regulation of transcription by hypoxia requires a multiprotein complex that includes hypoxia-inducible factor 1, an adjacent transcription factor, and p300/CREB binding protein. Mol Cell Biol. 1998;18(7):4089–96. CrossRef  
  139. Takeo S, Nasa Y. Role of energy metabolism in the preconditioned heart–a possible contribution of mitochondria. Cardiovasc Res. 1999;43(1):32–43. CrossRef  
  140. Ozcan C, Palmeri M, Horvath TL, Russell KS, Russell III RR. Role of uncoupling protein 3 in ischemia-reperfusion injury, arrhythmias, and preconditioning. Am J PhysiolHeart Circ Physiol. 2013;304(9):H1192–H1200.
  141.  
  142. Haines BA, Mehta SL, Pratt SM, Warden CH, Li PA. Deletion of mitochondrial uncoupling protein-2 increases ischemic brain damage after transient focal ischemia by altering gene expression patterns and enhancing inflammatory cytokines. J Cereb Blood Flow Metab. 2010;30(11):1825–33. CrossRef PubMed PubMedCentral
  143.  
  144. Yellon D, Alkhulaifi A, Pugsley W. Preconditioning the human myocardium. The Lancet. 1993;342(8866):276–7. CrossRef  
  145. Oshima Y, Fujio Y, Nakanishi T, Itoh N, Yamamoto Y, Negoro S, et al. STAT3 mediates cardioprotection against ischemia/reperfusion injury through metallothionein induction in the heart. Cardiovasc Res. 2005;65(2):428–35. CrossRef PubMed
  146.  
  147. St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, et al. Bioenergetic analysis of peroxisome proliferatoractivated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem. 2003 Jul 18;278(29):26597–603.
  148.  
  149. McLeod CJ, Aziz A, Hoyt RF, McCoy JP, Sack MN. Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J Biol Chem. 2005;280(39):33470–6. CrossRef PubMed
  150.  
  151. Hoshovs'ka IV, Shymans'ka TV, Sahach VF. [Genipin-- uncoupling protein inhibitor--reduces the protective effect of ischemic preconditioning]. Fiziolohichnyi Zhurnal Kiev Ukr 1994. 2011;57(6).
  152.  
  153. Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S, et al. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med. 2003;9(8):1062–8. CrossRef PubMed
  154.  
  155. Liu Y, Chen L, Xu X, Vicaut E, Sercombe R. Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2. BMC Physiol. 2009;9(1):17. CrossRef PubMed PubMedCentral
  156.  
  157. Mehta SL, Li PA. Neuroprotective role of mitochondrial uncoupling protein 2 in cerebral stroke. J Cereb Blood Flow Metab. 2009;29(6):1069–78. CrossRef PubMed
  158.  
  159. Nadtochiy S, Tompkins A, Brookes P. Different mechanisms of mitochondrial proton leak in ischaemia/ reperfusion injury and preconditioning: implications for pathology and cardioprotection. Biochem J. 2006;395:611–8. CrossRef PubMed PubMedCentral
  160.  
  161. Nadtochiy S, Tompkins A, Brookes P. Different mechanisms of mitochondrial proton leak in ischaemia/ reperfusion injury and preconditioning: implications for pathology and cardioprotection. Biochem J. 2006;395:611–8. CrossRef PubMed PubMedCentral
  162.  
  163. Criscuolo F, Mozo J, Hurtaud C, Nübel T, Bouillaud F. UCP2, UCP3, avUCP, what do they do when proton transport is not stimulated? Possible relevance to pyruvate and glutamine metabolism. Biochim Biophys Acta BBABioenerg. 2006;1757(9):1284–91.
  164.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.