Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2016; 62(4): 40-45


SUBUNIT SPECIFIC MODULATION OF GLYCINE RECEPTORS BY GINKGOLIC ACID

G. Maleeva1,2, S. Buldakova1, P. Bregestovski1

  1. Institute of System Neurosciences, University of Aix-Marseille, France;
  2. O. O. Bogomoletz Institute of Physiology, National Academy of Science, Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz62.04.040


Abstract

Ginkgo biloba extract is a multicomponent pharmacological agent widely used in neurological disorders therapy. It was shown that ginkgolic acid, a constituent of lipophylic Ginkgo biloba extract, has numerous biological activities. In the present study we have focused on the features of ginkgolic acid action on α1 and α2 glycine receptors that make part of the inhibitory system of the brain. Using whole-cell configuration of patchclamp recording we analysed effects of ginkgolic acid on different subunits of glycine receptors. Experiments were performed on cultured Chinese hamster ovary cells (CHO cells), transfected with α1 and α2 glycine receptor subunits. Ionic currents were induced by the fast application of different glycine concentrations. After 20-40 sec of pre-treatment with ginkgolic acid (25µM) currents mediated by α1 glycine receptors reversibly increased from 364±49 pA, (n=34) to 846±134 pA, (n=34). EC50 for glycine has changed from 36±6 µM (control) to 17±2 µM. In contrast, the application of ginkgolic acid on glycine receptors formed by α2 subunits did not provoke potentiation. Our results demonstrate that ginkgolic acid is а subunit specific modulator of glycine receptors. The mechanisms of the ginkgolic acid action on glycine receptors require further investigation.

Keywords: glycine receptor; ginkgolic acid; ionic currents; patch-clamp.

References

  1. Betz H, Laube B. Glycine receptors: recent insights into their structural organization and functional diversity. J Neurochem. 2006;97:1600–10. CrossRef PubMed
  2.  
  3. Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 2004;84:1051–95. CrossRef PubMed
  4.  
  5. Laube B, Maksay G, Schemm R, Betz H. Modulation of glycine receptor function: a novel approach for therapeutic intervention at inhibitory synapses? Trends Pharmacol Sci. 2002;23:519–27. CrossRef  
  6. Burzomato V, Groot-Kormelink P, Sivilotti LG, Beato M. Stoichiometry of recombinant heteromeric glycine receptors revealed by a pore-lining region point mutation. Recept Channels. 2003;9:353–61. CrossRef PubMed
  7.  
  8. Durisic N, Godin AG, Wever CM, Heyes CD, Lakadamyali M, Dent J. Stoichiometry of the human glycine receptor revealed by direct subunit counting. J Neurosci. 2012;32:12915–20. CrossRef PubMed PubMedCentral
  9.  
  10. Yang Z, Taran E, Webb TI, Lynch JW. Stoichiometry and subunit arrangement of α1β glycine receptors as determined by atomic force microscopy. Biochemistry. 2012;51:5229–31. CrossRef PubMed
  11.  
  12. Takahashi T, Momiyama A, Hirai K, Hishinuma F, Akagi H. Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron. 1992;9:1155–61. CrossRef  
  13. Malosio M, Marqueze- B, Pouey A, Kuhse J, Betz H. Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J 1991;10:2401–09. PubMed PubMedCentral
  14.  
  15. Heinze L, Harvey RJ, Haverkamp S. Diversity of Glycine Receptors in the Mouse Retina : Localization of the alpha 4 Subunit. J Comp Neurol. 2007;500:693–707. CrossRef PubMed
  16.  
  17. Lynch JW. Native glycine receptor subtypes and their physiological roles. Neuropharmacology. 2009;56:303–9. CrossRef PubMed
  18.  
  19. Webb TI, Lynch JW. Molecular pharmacology of the glycine receptor chloride channel. Curr Pharm Des. 2007;13(23):2350-67. CrossRef  
  20. Balansa W, Islam R, Gilbert DF, Fontaine F, Xiao X, Zhang H, Piggott AM, Lynch JW, Capon RJ. Australian marine sponge alkaloids as a new class of glycine-gated chloride channel receptor modulator. Bioorg Med Chem 2013;21:4420–25. CrossRef PubMed
  21.  
  22. Ude C., Schubert-Zsilavecz M., Wurglics M. Ginkgo biloba extracts: a review of the pharmacokinetics of the active ingredients. Clin Pharmacokinet. 2013; 52:727–49. CrossRef PubMed
  23.  
  24. Kondratskaya EL, Lishko PV, Chatterjee SS, Krishtal OA. BN52021, a platelet activating factor antagonist, is a selective blocker of glycine-gated chloride channel. Neurochem Int. 2002;40:647–53. CrossRef  
  25. Hawthorne R, Cromer B, Ng H, Parker MW, Lynch JW. Molecular determinants of ginkgolide binding in the glycine receptor pore. J Neurochem. 2006;98:395–407. CrossRef PubMed
  26.  
  27. Kondratskaya EL, Betz H, Krishtal OA, Laube B. The b subunit increases the ginkgolide B sensitivity of inhibitory glycine receptors. Neuropharmacology. 2005;49:945-51. CrossRef PubMed
  28.  
  29. Fuzzati N, Pace R, Villa F. A simple HPLC-UV method for the assay of ginkgolic acids in Ginkgo biloba extracts. Fitoterapia. 2003;74:247–56. CrossRef  
  30. Waseem T, Mukhtarov M, Buldakova S, Medina I, Bregestovski P. Genetically encoded Cl-Sensor as a tool for monitoring of Cl-dependent processes in small neuronal compartments. J Neurosci Methods. 2010;193:14–23. CrossRef PubMed
  31.  
  32. Avila A, Vidal PM, Dear TN, Harvey RJ, Rigo JM, Nguyen L. Glycine receptor α2 subunit activation promotes cortical interneuron migration. Cell Rep. 2013;4:738-50. CrossRef PubMed PubMedCentral
  33.  
  34. Harvey RJ, Depner UB, Wässle H, Ahmadi S, Heindl C, Reinold H, Smart TG, Harvey K, Schütz B, Abo-Salem OM, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer HU, Müller U. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science. 2004;304(5672):884-7. CrossRef PubMed
  35.  
  36. Brackmanna M, Zhaoa C, Schmiedenb V, Braunewell K. Cellular and subcellular localization of the inhibitory glycine receptor in hippocampal neurons. Biochemical and Biophysical Research Communications. 2004;324:1137–42. CrossRef PubMed
  37.  
  38. Chattipakorn S, McMahon L. Strychnine-sensitive glycine receptors depress hyperexcitability in rat dentate gyrus. J Neurophysiol. 2003;89:1339-42. CrossRef PubMed
  39.  
  40. Eichler S, Kirischuk S, Jüttner R, Schafermeier P, Legendre P, Lehmann TN, Gloveli T, Grantyn R, Meier J. Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy. J. Cell. Mol. Med. 2008;12:2848-66. CrossRef PubMed PubMedCentral
  41.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.