Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2016; 62(3): 66-77


PROSPECTS OF C60 FULLERENE APPLICATION AS A MEAN OF PREVENTION AND CORRECTION OF ISCHEMIC-REPERFUSION INJURY IN THE SKELETAL MUSCLE TISSUE

S.Yu. Zay1, D.A. Zavodovskyi2, K.I. Bogutska2, D.N. Nozdrenko2, Yu.I. Prylutskyy2

  1. Lesya Ukrainka Eastern European National University, Lutsk;
  2. Taras Shevchenko National University of Kyiv
DOI: https://doi.org/10.15407/fz62.03.066

Abstract

A lack of accurate diagnostic tests for the rapid detection of ischemic injury remains an urgent problem. In this context, a search for specific markers of ischemia as well as new therapeutic agents for prevention and treatment of ischemic injury continues. Water-soluble nano-sized C60 fullerenes, as powerful antioxidants, can act as promising means for correction of various muscle system states, in the base of which lie the destructive effects of free radicals.

Keywords: С60 fullerene; ischemia-reperfusion; muscle contraction; skeletal muscles.

References

  1. Murdock M, Murdoch MM. Compartment syndrome: a review of the literature. Clin Podiatr Med Surg. 2012; 29(2): 301-10. CrossRef PubMed
  2.  
  3. Bortolotto SK, Morrison WA, Messina A. The role of mast cells and fibre type in ischaemia reperfusion injury of murine skeletal muscles. J Inflamm (Lond). 2004; 1(1): 2-8. CrossRef PubMed PubMedCentral
  4.  
  5. Erkut B, Özyazıcıoğlu A, Karapolat BS et al. Effects of ascorbic acid, alpha-tocopherol and allopurinol on ischemia-reperfusion injury in rabbit skeletal muscle: an experimental study. Drug Target Insights. 2007; 2: 249-58. PubMed PubMedCentral
  6.  
  7. Turóczi Z, Arányi P, Lukáts Á et al. Muscle fiber viability, a novel method for the fast detection of ischemic muscle injury in rats. PLoS One. 2014; 9(1): e84783. CrossRef PubMed PubMedCentral
  8.  
  9. Rácz IB, Illyés G, Sarkadi L, Hamar J. The functional and morphological damage of ischemic reperfused skeletal muscle. Eur Surg Res. 1997; 29(4): 254-63. CrossRef PubMed
  10.  
  11. Tidball JG. Mechanisms of muscle injury, repair, and regeneration. Compr Physiol. 2011; 1(4): 2029-62. CrossRef  
  12. Carvalho AJ, McKee NH, Green HJ. Metabolic and contractile responses of fast and slow twitch rat skeletal muscles to ischemia and reperfusion. Plast Reconstr Surg. 1997; 99(1): 163-71. CrossRef PubMed
  13.  
  14. Vignaud A, Hourde C, Medja F, Agbulut O, Butler-Browne G, Ferry A. Impaired skeletal muscle repair after ischemia-reperfusion injury in mice. J Biomed Biotechnol. 2010; 2010: 724914. CrossRef PubMed PubMedCentral
  15.  
  16. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001; 53(1): 135-59. PubMed
  17.  
  18. Ghobrial TF, Egleseder WA Jr, Bleckner SA. Proximal ulna shaft fractures and associated compartment syndromes. Am J Orthop. 2001: 30(9): 703-7. PubMed
  19.  
  20. Mendelson S, Mendelson A, Holmes J. Compartment syndrome after acute rupture of the peroneus longus in a high school football player: a case report. Am J Orthop. 2003; 32(10): 510-2. PubMed
  21.  
  22. Suzuki T, Moirmura N, Kawai K, Sugiyama M. Arterial injury associated with acute compartment syndrome of the thigh following blunt trauma. Injury. 2005; 36(1): 151-9. CrossRef PubMed
  23.  
  24. Matsen FA. Compartment syndrome. New York, 1980.
  25.  
  26. Strafun SS, Dolgopolov OV, Nozdrenko DM. The influence of the acute ischemia on the contractive function and strength of skeletal muscle in experiment. J Orthoped, Traumatol, Prosthetics. 2010; 1: 56-60.
  27.  
  28. Hammers DW, Rybalko V, Merscham-Banda M, Hsieh PL, Suggs LJ, Farrar RP. Anti-inflammatory macrophages improve skeletal muscle recovery from ischemia-reperfusion. J Appl Physiol. 2015; 118(8): 1067-74. CrossRef PubMed PubMedCentral
  29.  
  30. Khoma OM, Zavodovskyi DA, Nozdrenko DM, Dolhopolov OV, Miroshnichenko MS, Motuzjuk OP. Dynamics of ischemic skeletal soleus muscle contraction in rats. Fiziol Zh. 2014; 60(1): 34-40. PubMed
  31.  
  32. Kostler W, Strohm PC, Sudkamp NP. Acute compartment syndrome of the limb. Injury. 2005; 36(8): 992-8. CrossRef PubMed
  33.  
  34. Sever MS, Vanholder R. Crush syndrome: a case report and review of the literature. J Emerg Med. 2015; 48(6): 730-1. CrossRef PubMed
  35.  
  36. Wang XT, Tian Y, Xu WX, Cui LH, Xiang SY, Lü SC. Protective effects of modeled superoxide dismutase coordination compound (MSODa) against ischemia/ reperfusion injury in rat skeletal muscle. Cell Physiol Biochem. 2015; 37(2): 465-76. CrossRef PubMed
  37.  
  38. Matheis G, Sherman MP, Buckberg GD, Habron DM, Young HH, Ignarro LJ. Role of L-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol. 1992; 262(Pt 2): H616-20. PubMed
  39.  
  40. Loerakker S, Oomens CW, Manders E et al. Ischemiareperfusion injury in rat skeletal muscle assessed with T2-weighted and dynamic contrast-enhanced MRI. Magn Reson Med. 2011; 66(2): 528-37. CrossRef PubMed
  41.  
  42. Prylutskyy YuI, Durov SS, Bulavin LA et al. Structure and thermophysical properties of fullerene C60 aqueous solutions. Int J Thermophys. 2001; 22(3): 943-55. CrossRef  
  43. Prylutskyy YuI, Yashchuk VM, Kushnir KM et al. Biophysical studies of fullerene-based composite for bionanotechnology. Mater Sci Engineer C. 2003; 23(1-2): 109-11. CrossRef  
  44. Golub A, Matyshevska O, Prylutska S et al. Fullerenes immobilized at silica surface: topology, structure and bioactivity. J Mol Liq. 2003; 105(2-3): 141-7. CrossRef  
  45. Scharff P, Carta-Abelmann L, Siegmund C et al. Effect of X-ray and UV irradiation of the C60 fullerene aqueous solution on biological samples. Carbon. 2004; 42(5-6): 1199-201. CrossRef  
  46. Prylutska SV, Burlaka AP, Klymenko PP, Grynyuk II, Prylutskyy YuI, Schuetze Ch, Ritter U. Using watersoluble C60 fullerenes in anticancer therapy. Cancer Nanotechnol. 2011; 2(1): 105-10. CrossRef PubMed PubMedCentral
  47.  
  48. Prylutskyy YuI, Buchelnikov AS, Voronin DP, Kostjukov VV, Ritter U, Parkinson JA, Evstigneev MP. C60 fullerene aggregation in aqueous solution. Phys Chem Chem Phys. 2013; 15(23): 9351-60. CrossRef PubMed
  49.  
  50. Prylutskyy YuI, Petrenko VI, Ivankov OI et al. On the origin of C60 fullerene solubility in aqueous solution. Langmuir. 2014; 30: 3967-70. CrossRef PubMed
  51.  
  52. Skamrova GB, Laponogov IV, Buchelnikov AS et al. Interceptor effect of C60 fullerene on the in vitro action of aromatic drug molecules. Eur Biophys J. 2014; 43(6- 7): 265-76.
  53.  
  54. Astefanei A, Nú-ez O, Galceran MT. Characterisation and determination of fullerenes: a critical review. Anal Chim Acta. 2015; 882: 1-21. CrossRef PubMed
  55.  
  56. Kumar A. Fullerenes for biomedical applications. J Environ Appl Biores. 2015; 3(4): 175-91.
  57.  
  58. Ritter U, Prylutskyy YuI, Evstigneev MP et al. Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fullerenes, Nanotubes, Carbon Nanostruct. 2015; 23(6): 530-4. CrossRef  
  59. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun. 2002; 294(1): 116-9. CrossRef  
  60. Schuetze C, Ritter U, Scharff P, Bychko A, Prylutska S, Rybalchenko V, Prylutskyy Yu. Interaction of N-fluorescein-5-isothiocyanate pyrrolidine-C60 compound with a model bimolecular lipid membrane. Mater Sci Engineer C. 2011; 31(5): 1148-50. CrossRef  
  61. Prylutska SV, Matyshevska OP, Grynyuk II, Prylutskyy YuI, Ritter U, Scharff P. Biological effects of C60 fullerenes in vitro and in a model system. Mol Cryst Liq Cryst. 2007; 468: 265-74. CrossRef  
  62. Montellano A, Da Ros T, Bianco A, Prato M. Fullerene C₆₀ as a multifunctional system for drug and gene delivery. Nanoscale. 2011; 3(10): 4035-41. CrossRef PubMed
  63.  
  64. Wang IC, Tai LA, Lee DD. C60 and water-soluble derivatives as antioxidants against radical-initiated lipid peroxidation. J Med Chem. 1999; 42(22): 4614-20. CrossRef PubMed
  65.  
  66. Prylutska SV, Grynyuk II, Matyshevska OP, Prylutskyy YuI, Ritter U, Scharff P. Anti-oxidant properties of C60 fullerenes in vitro. Fullerenes, Nanotubes, Carbon Nanostruct. 2008; 16(5-6): 698-705. CrossRef  
  67. Scharff P, Ritter U, Matyshevska OP et al. Therapeutic reactive oxygen generation. Tumori. 2008; 94(2): 278-83. PubMed
  68.  
  69. Injac R, Prijatelj M, Strukelj B. Fullerenol nanoparticles: toxicity and antioxidant activity. Methods Mol Biol. 2013; 1028: 75-100. CrossRef PubMed
  70.  
  71. Chen JR, Weng CN, Ho TJ, Chang IC, Lai SS. Identification of the copper-zinc superoxide dismutase activity in Micoplasma hyopneumoniae. Vet Microbiol. 2000; 73(4): 301-10. CrossRef  
  72. Krustic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of C60. Science. 1991; 254(5035): 1183-5. CrossRef PubMed
  73.  
  74. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F. C60 fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005; 5(12): 2578-85. CrossRef PubMed
  75.  
  76. Sayes CM, Fortner JD, Guo W, Lyon D et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 2004; 4(10): 1881-7. CrossRef  
  77. Prylutska SV, Matyshevska OP, Golub AA, Prylutskyy YuI, Potebnya GP, Ritter U, Scharff P. Study of C60 fullerenes and C60-containing composites cytotoxicity in vitro. Mater Sci Eng C. 2007; 27(5-8): 1121-4. CrossRef  
  78. Prylutska SV, Grynyuk II, Grebinyk SM et al. Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells. Mat-wiss u Werkstofftech. 2009; 40(4): 238-41. CrossRef  
  79. Didenko G, Prylutska S, Kichmarenko Y et al. Evaluation of the antitumor immune response to C60 fullerene. Matwiss u Werkstofftech. 2013; 44(2-3): 124-8. CrossRef  
  80. Tsai MC, Chen YH, Chiang LY. Polyhydroxylated C60, fullerenol, a novel free-radical trapper, prevented hydrogen peroxide- and cumene hydroperoxide-elicited changes in rat hippocampus in-vitro. J Pharm Pharmacol. 1997; 49(4): 438-45. CrossRef PubMed
  81.  
  82. Lotharius J, Dugan LL, O'Malley KL. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci. 1999; 19(4): 1284-93. PubMed
  83.  
  84. Huang SS, Mashino T, Mochizuki M. Effect of hexasulfobutylated C60 on the isolated aortic ring of guinea pig. Pharmacology. 2000; 64(2): 91-7. CrossRef  
  85. Bisaglia M, Natalini B, Pellicciari R, Straface E, Malorni W, Monti D, Franceschi C, Schettini G. C3-fullero-tris-methanodicarboxylic acid protects cerebellar granule cells from apoptosis. J Neurochem. 2000; 74(3): 1197-204. CrossRef PubMed
  86.  
  87. Straface E, Natalini B, Monti D et al. C3-fullero-tris-methanodicarboxylic acid protects epithelial cells from radiation-induced anoikia by influencing cell adhesion ability. FEBS Lett. 1999; 454(3): 335-40. CrossRef  
  88. Lin AM, Fang SF, Lin SZ, Chou CK, Luh TY, Ho LT. Local carboxyfullerene protects cortical infarction in rat brain. Neurosci Res. 2002; 43(4): 317-21. CrossRef  
  89. Chen YW, Hwang KC, Yen CC, Lai YL. Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol Regul Integr Comp Physiol. 2004; 287(1): R21-6. CrossRef PubMed
  90.  
  91. Monti D, Moretti L, Salvioli S et al. C60 carboxyfullerene exerts a protective activity against oxidative stressinduced apoptosis in human peripheral blood mononuclear cells. Biochem Biophys Res Commun. 2000; 277(3): 711-7. CrossRef PubMed
  92.  
  93. Mori T, Ito S, Matsubayashi K, Sawaguchi T. Comparison of nitric oxide synthase inhibitors, phospholipase A2 inhibitor and free radical scavengers as attenuators of opioid withdrawal syndrome. Behav Pharmacol. 2007; 18(8): 725-9. CrossRef PubMed
  94.  
  95. Sayes CM, Marchione AA, Reed KL, Warheit DB. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerenetoxicity in vivo in contrast to in vitro profiles. Nano Lett. 2007; 7(8): 2399-406. CrossRef PubMed
  96.  
  97. Baierl T, Seidel A. In vitro effects of fullerene C60 and fullerene black on immunofunctions of macrophages. Full Sci Technol. 1996; 4: 1073-85.
  98.  
  99. Ryan JJ, Bateman HR, Stover A, Gomez G et al. Fullerene nanomaterials inhibit the allergic response. J Immunol. 2007; 179(1): 665-72. CrossRef PubMed
  100.  
  101. Injac R, Perse M, Cerne M, Potocnik N, Radic N, Govedarica B, Djordjevic A, Cerar A, Strukelj B. Protective effects of fullerenol C60(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer. Biomaterials. 2009; 30(6): 1184-96. CrossRef PubMed
  102.  
  103. Trajkovic S, Dobric S, Jacevic V, Dragojevic-Simic V, Milovanovic Z, Dordevic A. Tissue-protective effects of fullerenol C60(OH)24 and amifostine in irradiated rats. Colloids Surf B Biointer-faces. 2007; 58(1): 39-43. CrossRef PubMed
  104.  
  105. Ye S, Zhou T, Cheng K, Chen M, Wang Y, Jiang Y, Yang P. Carboxylic acid fullerene (C60) derivatives attenuated neuroinflammatory responses by modulating mitochondrial dynamics. Nanoscale Res Lett. 2015; 10(1): 953. CrossRef PubMed PubMedCentral
  106.  
  107. Paradise WA, Vesper BJ, Goel A, Waltonen JD, Altman KW, Haines GK, Radosevich JA. Nitric oxide: perspectives and emerging studies of a well known cytotoxin. Int J Mol Sci. 2010; 11(7): 2715-45. CrossRef PubMed PubMedCentral
  108.  
  109. Hur J, Pak SC, Koo BS, Jeon S. Borneol alleviates oxidative stress via upregulation of Nrf2 and Bcl-2 in SH-SY5Y cells. Pharm Biol. 2013; 51(1): 30-5. CrossRef PubMed
  110.  
  111. Higashi N, Shosu T, Koga T, Niwa M, Tanigawa T. pH-responsive, self-assembling nanoparticle from a fullerene-tagged poly(L-glutamic acid) and its superoxide dismutase mimetic property. J Colloid Interface Sci. 2006; 298(1): 118-23. CrossRef PubMed
  112.  
  113. Lai HS, Chen WJ, Chiang LY. Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in dogs. World J Surg. 2000; 24(4): 450-4. CrossRef PubMed
  114.  
  115. Lai YL, Murugan P, Hwang KC. Fullerene derivative attenuates ischemia-reperfusion-induced lung injury. Life Sci. 2003; 72(11): 1271-8. CrossRef  
  116. Bitner BR, Marcano DC, Berlin JM, Fabian RH. Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury. ACS Nano. 2012; 6(9): 8007-14. CrossRef PubMed PubMedCentral
  117.  
  118. Huang SS, Tsai SK, Chih CL, Chiang LY, Hsieh HM, Teng CM, Tsai MC. Neuroprotective effect of hexasulfobutyl- ated C60 on rats subjected to focal cerebral ischemia. Free Radic Biol Med. 2001; 30(6): 643-9. CrossRef  
  119. Giust D, Da Ros T, Martín M, Albasanz JL. [60]Fullerene derivative modulates adenosine and metabotropic glutamate receptors gene expression: a possible protective effect against hypoxia. J Nanobiotechnol. 2014; 12: 27-32. CrossRef PubMed PubMedCentral
  120.  
  121. Giust D, León D, Ballesteros-Ya-ez I, Da Ros T, Albasanz JL. Modulation of adenosine receptors by [60]fullerene hydrosoluble derivative in SK-N-MC cells. ACS Chem Neurosci. 2011; 2(7): 363-9. CrossRef PubMed PubMedCentral
  122.  
  123. Liu Q, Cui Q, Li XJ, Jin L. The applications of buckminsterfullerene C60 and derivatives in orthopaedic research. Connect Tissue Res. 2014; 55(2): 71-9. CrossRef PubMed PubMedCentral
  124.  
  125. Kalezic I, Bugaychenko LA, Kostyukov AI, Pilyavskii AI, Ljubisavljevic M, Windhorst U, Johansson H. Fatigue-related depression of the feline monosynaptic gastrocnemius-soleus reflex. J Physiol (Gr Brit). 2004; 556(Pt1): 283-96. CrossRef PubMed PubMedCentral
  126.  
  127. Nozdrenko DM, Bogutska KI, Prylutskyy YuI, Ritter U, Scharff P. C60 fullerene effect on the dynamics of fatigue processes in rat soleus muscle after ischemia-reperfusion. Biotechnol Acta. 2014; 7(3): 43-51. CrossRef  
  128. Nozdrenko D, Prylutskyy Yu, Ritter U, Scharff P. Protective effect of water-soluble pristine C60 fullerene in ischemia-reperfusion injury of skeletal muscle. Int J Phys Pathophys. 2014; 5(2): 97-110. CrossRef  
  129. Kostyukov I. Muscle hysteresis and movement control: a theoretical study. Neurosci. 1998; 83(1): 303-20. CrossRef  
  130. Nozdrenko DN, Bogutska KI. About molecular mechanisms of fiber muscle contraction at transition to new equilibrium state: analysis of experimental data using three-componential electrical stimulating signal. Biopolymers and Cell. 2005; 21(3): 283-6. [Russian]. CrossRef  
  131. Nozdrenko DM, Bogutska KI, Prylutskyy YI, Korolovych VF, Evstigneev MP, Ritter U, Scharff P. Impact of C60 fullerene on the dynamics of force-speed changes in soleus muscle of rat at ischemia-reperfusion injury. Fiziol Zh. 2015; 61(2): 48-59. [Ukrainian]. PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.