Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2017 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2016; 62(3): 30-38


EXOCRINE FUNCTION OF THE LIVER IN RATS WITH EXPOSURE TO CОRVITIN

T.V. Vovkun1, P.I. Yanchuk1, L.Y. Shtanova1, S.P. Vesеlskyу1 , A.S. Shalamaу2

  1. Taras Shevchenko National University of Kyiv;
  2. PJSC SIC “Borshchahivskiy CPP”
DOI: https://doi.org/10.15407/fz62.03.030

Abstract

In acute experiments on rats with cannulated bile duct we studied the effect of Corvitin, water-soluble analogue of quercetin, on secretion of bile. Intraportal administration of the test compound at doses of 2,5; 5 and 10 mg/kg resulted in a significant increase in the volume of secreted bile by 20,9, 31,2 and 20,4%, respectively, as compared with the control. Using the method of thin layer chromatography it was established the mild stimulating effect of Corvitin on the processes of bile acids conjugation with taurine and glycine, especially when administered at a dose of 5 mg/kg. This flavonoid did not affect the concentration of glycocholic acid, however increased the content of glycochenodeoxycholic and glycodeoxycholic acids in the mixture between 15 to 35,1%. Regarding free bile acids, the concentration of cholic acid, chenodeoxycholic and deoxycholic acids in the mixture was increased significantly relative to control only after Corvitin application at dose 10 mg/ kg. In the first case – from 17,9 to 29,8%, in the second – from 25 to 65,4%. At the dose of 5 mg/kg, Corvitin significantly increased the ratio of bile cholates conjugation (maximum by 23,2%), whereas 10 mg/kg of the drug decreased this index by 27,0%. After administration of Corvitin, the hydroxylation ratio in all experimental groups differed little from the control: at the dose of 5 and 10 mg/kg this parameter decreased by 14%. Thus, Corvitin modulates exocrine function of the liver, causing an increase in bile secretion and concentration of different cholates, dose-dependently increasing or decreasing the effectiveness of multienzyme systems providing processes of bile acids conjugation in rats.

Keywords: Corvitin; liver; bile; secretion of bile; bile acids; conjugation and hydroxylation of cholates.

References

  1. Hofmann A. Bile Acids: Trying to Understand Their Chemistry and Biology with the Hope of Helping Patients. Hepatology. 2009;49:1403-18. https://doi.org/10.1002/hep.22789 PMid:19296471
  2.  
  3. Bischoff SC. Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care. 2008;11(6):733-40. https://doi.org/10.1097/MCO.0b013e32831394b8 PMid:18827577
  4.  
  5. Lin SY, Wang YY, Chen WY, Chuang YH, Pan PH, Chen CJ. Beneficial effect of quercetin on cholestatic liver injury. J Nutr Biochem. 2014;25(11):1183-95. https://doi.org/10.1016/j.jnutbio.2014.06.003 PMid:25108658
  6.  
  7. Wang J, Miao M, Zhang Y, Liu R, Li X, Cui Y, Qu L. Quercetin ameliorates liver injury induced with Tripterygium glycosides by reducing oxidative stress and inflammation. Can J Physiol Pharmacol. 2015;93(6):427-33. https://doi.org/10.1139/cjpp-2015-0038 PMid:25894526
  8.  
  9. Wang J, Zhang Y, Zhang Y, Cui Y, Liu J, Zhang B. Protective effect of Lysimachia christinae against acute alcoholinduced liver injury in mice. BioScience Trends. 2012;6(2):89-97. PMid:22621991
  10.  
  11. Ofem E, Ikpi DE, Essien NM. Increased bile flow rate and altered composition of bile induced by ethanolic leaf extract of Azadirachta indica (neem) in rats. Nig J Exp and Clin Biosciences. 2013;1(1):18-22. https://doi.org/10.4103/2348-0149.123958
  12.  
  13. D'Archivio M, Filesi C, Vari R, Scazzocchio B, Masella R. Bioavailability of the polyphenols: Status and controversies. Int J Mol Sci. 2010;11:1321-42. https://doi.org/10.3390/ijms11041321 PMid:20480022 PMCid:PMC2871118
  14.  
  15. Vinogradova E, Pasichnichenko O, Vovkun T, Yanchuk P. Influence of corvitin on liver blood flow and serotonin on contractile activity of portal vein. Bull of Kyiv National Taras Shevchenko Univ. 2012;15:30-32. [Ukrainian].
  16. Veselskiy SP, Lyaschenko PS, Kostenko SI, Stepanov ZA, Kurovska LF. Pat. 99031324 Ukraine, MBN A61V5-14. Мethod of preparation of bioliquid samples for determination of lipid substances. №33564A; applications 05.10.1999; publ. 15.02.2001; Bull. №1 [Ukrainian].
  17.  
  18. Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009;50(10):1955-66. https://doi.org/10.1194/jlr.R900010-JLR200 PMid:19346330 PMCid:PMC2739756
  19.  
  20. Ikeda S, Tachikawa M, Akanuma S. Involvement of γ-aminobutiric acid transporter 2 in the hepatic uptake of taurine in rats. Am J Physiol Gastrointest Liver Physiol. 2012;303:291-297. https://doi.org/10.1152/ajpgi.00388.2011 PMid:22678999
  21.  
  22. Reshetnyak VI. Physiological and molecular biochemical mechanisms of bile formation. World J Gastroenterol. 2013; 19(42):7341-60. https://doi.org/10.3748/wjg.v19.i42.7341 PMid:24259965 PMCid:PMC3831216
  23.  
  24. Kakiyama G, Iida T, Yoshimoto A, Goto T, Mano N, Goto J, Nambara T, Hagey LR, Hofmann AF. Chemical synthesis of (22E)-3 alpha, 6 beta,7 beta-trihydroxy-5 beta-chol-22- en-24-oic acid and its taurine and glycine conjugates: a major bile acid in the rat. J Lipid Res. 2004;45:567-73. https://doi.org/10.1194/jlr.D300027-JLR200 PMid:14657194
  25.  
  26. Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res. 2014;55(8):1553-95. https://doi.org/10.1194/jlr.R049437 PMid:24838141 PMCid:PMC4109754
  27.  
  28. Meier PJ, Eckhardt U, Schroeder A, Hagenbuch B. Substrate specificity of sinusoidal bile acid and organic anion uptake systems in rat and human liver. Hepatology. 1997;26(6):1667-77. https://doi.org/10.1002/hep.510260641 PMid:9398014
  29. Sherlock W, Dooley J. Liver and biliary tract: A Practical Guide. M. GOETAR-Med, 2002, 864 pp. [Russian].
  30.  
  31. Hofmann AF, Mysels KJ. Bile acid solubility and precipitation in vitro and in vivo: the role of conjugation, pH, and Ca2+ ions. J Lipid Res. 1992;33(5):617-26. PMid:1619357
  32.  
  33. Clayton PT. Disorders of bile acid synthesis. J Inherit Metab Dis. 2011;34(3):593-604. https://doi.org/10.1007/s10545-010-9259-3 PMid:21229319
  34.  
  35. Setchell KD, Heubi JE, Shah S. Genetic defects in bile acid conjugation cause fat-soluble vitamin deficiency. Gastroenterology. 2013;144(5):945-55. https://doi.org/10.1053/j.gastro.2013.02.004 PMid:23415802 PMCid:PMC4175397
  36.  
  37. Heubi JE, Setchell KD, Jha P. Treatment of bile acid amidation defects with glycocholic acid. Hepatology. 2015;61(1):268-74. https://doi.org/10.1002/hep.27401 PMid:25163551 PMCid:PMC4280294
  38.  
  39. El-Desoky AE, Delpy DT, Davidson BR, Seifalian AM. Assessment of hepatic ischaemia reperfusion injury by measuring intracellular tissue oxygenation using near infrared spectroscopy. Liver. 2001;21(1):37-44. https://doi.org/10.1034/j.1600-0676.2001.210106.x PMid:11169071
  40.  
  41. Ferdinandusse S, Houten SM. Peroxisomes and bile acid biosynthesis. Biochim Biophys Acta. 2006;1763:1427-40. https://doi.org/10.1016/j.bbamcr.2006.09.001 PMid:17034878

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2017.