Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2016; 62(6): 9-18


The role of hydrogen sulfide in diastolic function restoration during aging

K.O. Drachuk, N.A. Dorofeyeva, V.F. Sagach

    O.O. Bogomolets Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz62.06.009

Abstract

The objective of the study was to examine the effect of exogenous hydrogen sulfide donor, sodium hydrosulfide (NaHS), on the free radical generation, cNOS uncoupling in the myocardium, and diastolic function in old rats. To evaluate diastolic function of the heart, we used pressure-volume (PV) conductance catheter system (Millar Instruments, USA). It was shown that H2S levels in the isolated mitochondria and whole heart homogenates obtained from old age rats were significantly lower comparing with adult animals. The markers of combined oxidative and nitrosative stress (the rate of О2•- , •ОН generation, pools of H2O2,diene conjugates, malondialdehyde, uric acid, the activity of iNOS, nitrate reductase, and NO3 - pools) were increased in the old hearts in line with сNOS uncoupling. Such changes in NOS coupling resulted in the loss of diastolic relaxation (decrease of the rate of relaxation of the left ventricle (dp/dtmin) by 33%, 3-times increase of the end-diastolic pressure, 1.5-time increase of the time constant of left ventricular relaxation (Tau g) and 2-time increase of the end-diastolic stiffness). It has been found that NaHS inhibits oxidative and nitrosative stress, restores сNOS coupling and constitutive de novo synthesis of nitric oxide (NO), which promotes an improvement of the diastolic function (increase of the dp/dtmin by 20% and decrease of Tau g by 13%) .

Keywords: aging; cNOS uncoupling; heart; hydrogen sulfide; nitrosative stress; oxidative stress.

References

  1. Hollingsworth KG, Blamire AM, Keavney BD, Macgowan GA. Left ventricular torsion, energetics, and diastolic function in normal human aging. Am J Physiol Heart Circ Physiol. 2012; 302:885–92. CrossRef PubMed PubMedCentral
  2.  
  3. Schmidt U, Zhu X, Lebeche D, Huq F, Guerrero JL, Hajjar RJ. In vivo gene transfer of parvalbumin improves diastolic function in aged rat hearts. Cardiovasc Res. 2005; 66:318–23. CrossRef PubMed
  4.  
  5. Zhang Y, Tocchetti CG, Krieg T, Moens AL. Oxidative and nitrosattive stress in the maintenance of myocardial function. Free Radic Biol Med. 2012; 53(8):1531–40. CrossRef PubMed
  6.  
  7. Ungvari Z, Gupte SA, Recchia FA, Batkai S, Pacher P. Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol. 2005; 3(3):221–9. CrossRef PubMed PubMedCentral
  8.  
  9. Dorofeyeva NA, Kotsjuruba AV, Sagach VF. NOS uncoupling evokes oxidative stress and the cardiohemodynamic disorders in hypertension. Int J Physiol Pathophysiol. 2016; 7(1):71–79. CrossRef  
  10. Roe ND, He EY, Wu Z, Ren J. Folic acid reverses nitric oxide synthase uncoupling and prevents cardiac dysfunction in insulin resistance: role of Ca2+/ calmodulin-activated protein kinase II. Free Radic Biol Med. 2013; 65:234–43. CrossRef PubMed PubMedCentral
  11.  
  12. Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, et al. H2S Protects Against Pressure Overload Induced Heart Failure via Upregulation of Endothelial Nitric Oxide Synthase (eNOS). Circulation. 2013; 127(10):1116–27. CrossRef PubMed PubMedCentral
  13.  
  14. King AL, Polhemus DJ, Bhushan S, Otsuka H, Kondo K, Nicholson CK, et al. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci. 2014;111(8):3182–7. CrossRef PubMed PubMedCentral
  15.  
  16. Shen Y, Zhen Z, Luo S, Guo W, Zhu YZ. The cardioprotective effects of hydrogen sulfide in heart diseases: from molecular mechanisms to therapeutic potential. Oxid Med Cell Longev. 2015; 2015 [Electronic resource]. Access modehttps://www.hindawi.com/journals/ omcl/2015/925167/
  17.  
  18. Polhemus DJ, Lefer DJ. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res. 2014;114(4):730–7. CrossRef PubMed PubMedCentral
  19.  
  20. Pacher P, Nagayama T, Mukhopadhyay P, Batkai S, Kass DA. Measurement of cardiac function using pressurevolume conductance catheter technique in mice and rats. Nat Protoc. 2008; 9:1422–34. CrossRef PubMed PubMedCentral
  21.  
  22. Drachuk KO, Kotsjuruba AV, Sagach VF. Hydrogen sulfide donor, NaHS, recovers constitutive NO synthesis and endothelium-dependent relaxation of isolated aorta in old rats. Fiziol Zh. 2015; 61(6):3-10. [Ukrainian].
  23.  
  24. McCord JM, Roy RS. The pathophysiology of superoxide: roles in inflammation and ischemia. Can J Physiol Pharmacol. 1982; 60(11):1346–52. CrossRef  
  25. Halliwell B, Grootveld M, Gutteridge J. Methods for the measurement of hydroxyl radicals in biomedical systems: deoxyribose degradation and aromatic hydroxylation. MethodsBiochem Anal. 1988; 33:59–90.
  26.  
  27. Huwiler M, Kohler H. Pseudo-catalytic degradation of hydrogen peroxide in the lactoperoxidase/H2O2/iodide system.Eur J Biochem.1984; 141(1):69–74. CrossRef PubMed
  28.  
  29. Sharipov RR, Kotsjuruba AV, Kop»iak BS, Sagach VF. Induction of oxidative stress in heart mitochondria under focal cerebral ischemia-reperfusion and protective effect of ecdysterone. Int J Phys Pathophysiol. 2015; 6(2):157–64. CrossRef  
  30. Jialal I, Devaraj S. Low–density lipoprotein oxidation, antioxidants and atherosclerosis: a clinical biochemistry perspective. Clin Chem. 1996; 42:498–506.
  31.  
  32. Mihara M, Uchiyama M. Determination malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978; 86(1):271–8. CrossRef  
  33. Salter M, Knowles RG, Moncada S. Widespread tissue distribution, species and changes in activity of Ca2+ -dependent and Ca2+ -independent nitric oxide syntases. FEBS Lett. 1991; 291(1):145–149. CrossRef  
  34. Chin SY, Pandey KN, Shi SJ, Kobori H, Moreno C, Navar LG. Increased activity and expression of Ca2+-dependent NOS in renal cortex of ANG II-infused hypertensive rats. Amer J Physiol. 1999; 277(5):797–804.
  35.  
  36. Bryan NS, Grisham MB. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic Biol Med. 2007; 43(5):645–57. CrossRef PubMed PubMedCentral
  37.  
  38. Green LL, WagnerDA, GlogowskiJ, SkipperPL, Wishnok JS, TannenbaumSR.Analysis of nitrate, nitrite and [+5N] nitrate in biological fluids. Anal Biochem. 1982; 126(1):131–8. CrossRef  
  39. Svenson A. A rapid and sensitive spectrophotometric method for determination of hydrogen sulfide with 2,2'-dipyridyl disulfide. Anal. Biochem. 1980; 107:51–5.
  40.  
  41. Sagach VF, Vavilova GL, Strutyns'ka NA, Rudyk OV. The aging increase in the sensitivity of the mitochondrial permeability transition pore opening to inductors in rat heart. Fiziol Zh. 2004; 50(2): 49–63 [Ukrainian].
  42.  
  43. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265–75.
  44.  
  45. Asp ML, Martindale JJ, Heinis FI, Wang W, Metzger JM. Calcium mishandling in diastolic dysfunction: mechanisms and potential therapies. Biochim Biophys Acta. 2013; 1833(4):895–900. CrossRef PubMed PubMedCentral
  46.  
  47. Gouspillou G, Bourdel-Marchasson I, Rouland R, Calmettes G, Biran M, Deschodt-Arsac V, et al. Mitochondrial energetics is impaired in vivo in aged skeletal muscle. Aging Cell. 2014;13(1):39–48. CrossRef PubMed PubMedCentral
  48.  
  49. Sullivan-Gunn MJ, Lewandowski PA. Elevated hydrogen peroxide and decreased catalase and glutathione peroxidase protection are associated with aging sarcopenia. BMC Geriatr. 2013; 13:104. CrossRef PubMed PubMedCentral
  50.  
  51. Griguer CE, Oliva CR, Kelley EE, Giles GI, Lancaster JR Jr, Gillespie GY. Xanthine oxidase-dependent regulation of hypoxia-inducible factor in cancer cells. Cancer Res. 2006; 66(4):2257–63. CrossRef PubMed
  52.  
  53. Kayyali US, Donaldson C, Huang H, Abdelnour R, Hassoun PM. Phosphorylation of xanthine dehydrogenase/oxidase in hypoxia. J Biol Chem. 2001; 276(17):14359–65. CrossRef PubMed
  54.  
  55. Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, etal. Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem. 2008; 106(1):45–55. CrossRef PubMed
  56.  
  57. Brown WJ, Chambers K, Doody A. Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic. 2003; 4(4):214–21. CrossRef PubMed
  58.  
  59. Sun GY, Xu J, Jensen MD, Simonyi A. Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res. 2004; 45(2): 205–13. CrossRef PubMed
  60.  
  61. Jensen FB. The role of nitrite in nitric oxide homeostasis: a comparative perspective. Biochim Biophys Acta. 2009; 1787(7):841–8. CrossRef PubMed
  62.  
  63. El Assar M, Angulo J, Vallejo S, Peiró C, Sánchez-Ferrer CF, Rodríguez-Ma-as L. Mechanisms involved in the aging-induced vascular dysfunction. Front Physiol. 2012; [Electronic resource]. Access mode http://journal.frontiersin.org/article/10.3389/fphys.2012.00132/full
  64.  
  65. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996; 271(5):1424–37.
  66.  
  67. Szaby C. The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock. 1996; 6(2):79–88. CrossRef  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.