Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2004; 50(2): 49-63


THE AGING INCREASE IN THE SENSITIVITY OF THE MITOCHONDRIAL PERMEABILITY TRANSITION PORE OPENING TO INDUCTORS IN RAT HEART

V. F. Sagach, G. L. Vavilova, N. A. Strutyns’ka, O. V. Rudyk

  1. A.A. Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev



Abstract

An age-related increase in the sensitivity of the mitochondrial permeability transition pore (MPTP) to inductors of it’s opening, Ca2+ ions and phenylarsineoxide (PAO) was studied in experiments in vitro on isolated heart mitochondria of adult and old rats. Two indices were measured spectrophotometrically (λ=520 nm) by a decrease in an optical density (OD), resulting from mitochondrial swelling and a release of mitochondrial unidentified substances (mitochondrial factor, MF) registered also spectrophotometrically in a range of waves λ=230-260 nm. Dose-dependent effect of Ca2+ (10-7-10-4 mol/l) and PAO (10-8-10-4 mol/l) on swelling of the mitochondria were observed in samples from both adult and old rats. Swelling of the mitochondria from the heart of old rats induced by application of the above inductors was more intensive than the respective effect in samples from adult rats. In samples from the heart of both adult and old rats Ca2+ ions within the tested concentration range (10-7-10-4 mol/l) evoked the release of MF in a dosedependent manner. Mitochondria from the heart of old rats were found to be capable of releasing some amounts of MF in the absence of the MPTP inductors PAO. When this inductor was applied in a 10-9 to 10-4 mol/l concentration range, isolated mitochondria from the heart of old rats released unidentified substances with the absorption peaks at two wavelength, λ=230nm and λ=240-245 nm. The former peak was found to be Cyclosporin A-insensitive, while the latter peak could be practically completely inhibited by this antibiotic. The concentrations of tested solutions (10-7 mol/l CaCl2 and 10-9 mol/l PAO), at which the release of the factor from the mitochondria of the old rat heart was observed, were significantly lower than those in adult rats. Our experimental data show that mitochondria isolated from the heart tissue of old rats demonstrate significantly higher sensitivity to inductors of MPTP-opening, Ca2+ -overload and PAO as compared to that typical of adult animals. A higher sensitivity of MPTP-opening in the heart of old rats was accompanied by a higher basal level of expression of mRNA of the bax gene, as compared to that found in adult animals. The expression of the bcl-2 gene showed no age group-related differences. It can be supposed that a proapoptotic agent, the Bax protein, is related to an increase in the sensitivity of the MPTP (in particular to that manifested in the processes of pore formation) in the course of aging. Antioxidants, melathonin and trolox, when applied in 10-5 mol/l concentration, presented to a certain extent opening of the MPTP-induced by 10-5 mol/l PAO in samples from adult and old rats. These findings can be used for correction of increased sensitivity of the MPTP to different inductors, which is typical of old rats. We conclude that physiological aging is accompanied by the mitochondrial dysfunction. The MFreleased capability of the mitochondria from heart tissue of old rats observed both in the presence and absence of MPTP-opening inductors (probably related to a higher sensitivity of MPTP-opening) is one of the manifestation of such dysfunction.

References

  1. Владимиров Ю.А. Нарушение барьерных свойств внутренней и наружной мембраны митохондрий, некроз и апоптоз // Биол. мембраны. 2002. 19, №5. С.356-377.
  2. Загоскин П.П., Хватова Е.М. Митохондриальные болезни новая отрасль современной медицины // Вопр. мед. химии. 2002. 48. С. 321-336.
  3. Заморський І.І., Мещишен І.Ф, Пішак В.П. Фотоперіодичні зміни системи глутатіону мозку за гострої гіпоксії // Укр. біохім. журн. 1998. 70, № 6. C.69-75.
  4. Егорова А.Б., Успенская Ю.А., Михуткина С.В., Ставицкая Е.Ю. Повреждение цитоскелета и клеточных мембран при апоптозе // Успехи совр. биологии. 2001. 121, № 5. С.502-510.
  5. Коркушко О.В., Шатило В.Б., Писарук и др. Влияние физиологической дозы мелатонина на стрессовую реакцию сердечно-сосудистой системы у людей пожилого и старческого возраста // Журн. АМН Украины. 2002. 8, № 3 C.599-607.
  6. Сагач В.Ф., Шиманська Т.В., Надточій. С.М. Фактор, який вивільнюється під час реперфузії ішемізованого серця, може бути маркером відкриття мітохондріальної пори // Фізіол. журн. 2003. 49, №4. С. 7-13.
  7. Сагач В.Ф., Вавілова Г.Л., Струтинська Н.А., Акопова О.В. Вплив індукторів та інгібіторів мітохондріальної пори на її утворення та на вивільнення неідентифікованого мітохондріального фактора // Там само. 2003. 49, №1. С.3-12.
  8. Сагач В.Ф., Baвілова Г.Л., Рудик О.В., Струтинська Н.А. Вивільнення неідентифікованих речовин мітохондріального походження показник відкриття мітохондріальної пори серця щурів // Там само. 2003. 49, №5. С.3-12.
  9. Acuna-Castroviejo D., Martyn M., Macyas M. et. al. Melatonin, mitochondria, and cellular bioenergetics // J. Pineal Res. 2001. 30. P. 65-74.
  10. Al-Nasser I.A. Salicylate-induced kidney mitochondrial permeability transition is prevented by cyclospor in A // Toxicol. Let. 1999. 105. P.18.
  11. Carafoli E. Calcium signaling: a tale for all seasons // Proc. Natl. Acad. Sci. USA. 2002. 99, № 3. P. 1115-1122.
  12. Crompton M., Barksly E., Jonson N., Capano M. Mitochondrial intermembrane junctional complexes and their involvement in cell death // Biochemie. 2002. 84. P. 143-152.
  13. Bernardes C.F., Fagian M.M., Meyer-Fernandes J.R. et al. Suramin inhibits respiration and induces membrane permeability transition in isolated rat liver mitochondria // Toxicology. 2001. 169. P.17-23.
  14. Bernardi P. The permeability transition pore: control points of a cyclosporine A-sensitive mitochondrial channel involved in cell death // Biochim. and Biophys. Acta. 1996. 1275. P. 5-9.
  15. Borner C. The Bcl-2 family: sensors and checkpoints for life-or-death decisions // Mol.Immunol. 2003. 39. P. 615-647.
  16. Chernyak B.V., Bernardi P. The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites // Eur. J. Biochem. 1996. 238, № 3. P. 623-630.
  17. Friberg H. Ferrand-Drake M., Bengtsson F. et al. Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death // J. Neuroscience. 1998. 18, №14. P.5151-5159.
  18. Ganitkevich V.Y. The role of mitochondria in cytoplasmic Ca2+ cycling // Exp. Physiol. 2003. 88, № 1. P.91-97.
  19. Gublins E., Dreschers S., Bock J. Role of mitochondria in apoptosis // Experimental Physiology. 2003. 88, № 1. P. 85-90.
  20. Grijalba M.T., Vercesi A.E., Schreier S. Ca2+ induced increased lipid packing and domain formation in submitochondrial particles. Possible step in the mechanism of Ca2+ stimulated generation of reactive oxygen species by the respiratory chain // Biochem. 1999. 38. Р. 13279-13287.
  21. Hagen M.T., Yowe D.L., Bartholomew J.C. et. al. Mitochondrial decay in hepatocytes from old rats: membrane potential decline, geterogenity and oxidants increase // Proc. Natl. Acad. Sci. 1997. 94. P. 3064-3069.
  22. Halеstrap A.P., Mc Stray G.P., Clarke S.J. The permeability transition pore complex: another view // Biochemie. 2002. 84. P.153-166.
  23. Harman D. The aging process: mojor risk factor for disease and death // Proc. Acad. Sci. USA. 1991. 88, № 12. P.5360-5367. 24. He L., Lemasters J.J. Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? // FEBS Let. 2002. 512. P.1-7.
  24. Kowaltowski A.J., Castilho R.F. Ca2+ acting at the external side of the inner mitichondrial membrane can stimulate mitochondrial permeability transition induced by phenylarsine oxide // Biochіm. et Biophys. Acta. 1997. 1322, № 23. P. 221-229.
  25. Kroemer G., Zamzami N., Susin S.A. Mitochondrial control of apoptosis // Immunol. Today. 1997. 18. P. 44-51.
  26. Kumar D., Jugdutt B.I. Apoptosis and oxidants in heart // J.lab. Clin. Med. 2003. 142. - P.288-297.
  27. Lesnefsky E.J., Moghaddas S., Tandler J. et al. Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging, and failure // J. Mol. Cardiol. 2001. 33, № 6. P.1065-1089.
  28. Lesnefsky E.J., Hoppel C.L. Ischemia-reperfusion injury in the aged heart: role of mitochondria // Arch. Biochem Biophys. 2003. 420, №2. P.287-297.
  29. Lowry O.H., Rosenbrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent // J. Biol. Chem. 1951. 193, № 1. P.265-275.
  30. Loeffer M., Kroemer G. The mitochondrion in cell death control: Certainties and incognita // Expt. Cell Res. 2000. 256. P.19-26.
  31. Lucas D.T., Szweda L.I. Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction // Proc. Natl. Acad. Sci. 1998. 95. P.510-514.
  32. Mather M., Rottenberg H. Ageing enhances the activation of the permeability transition pore in mitochondria // Biochem. Biophys. Res. Commun. 2000. 273. Р.603-608.
  33. Miquel J., Economos J., Fleming J.E. Mitochondrial role in cell aging // Exp. Gerontol. 1980. 15. P.579-591.
  34. Muscari C., Frascaro M., Guarnieri C., Caldarera C.M. Mitochondrial function and superoxide generation from submitochondrial particles of aged rat hearts // Biochіm et Biophys. Acta. 1990. 1015. P.2000-2004.
  35. Narita M., Shimizu S., Ito T. et. al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome C release in isolsted mitochondria // PNAS 1998. 95, №25. P.146810-14686.
  36. Nicotera P., Ankarcrona M., Bonfoco E. et. al. Neuronal necrosis and apoptosis: two distinct events induced by exposure to glutamate or oxidative stress // Adv. Neurol. 1997. 72. 95-101.
  37. Ravagnan L., Roumier Th., Kroemer G. Mitochondria, the killer organells and their weapons // J. Cell. Physiol. 2002. 192. P. 131-137.
  38. Robertson J.D., Orrenius S.D. Molecular Mechanisms of Apoptosis Induced by Cytotoxic Chemicals // Crit. Rev. Toxicol. 2000. 30, №5. P.609-627.
  39. Rottenberg H., Wu S. Mitochondrial dysfunction in lymphocytes from old mice: enhanced activation of the permeability transition // Biochem. et Biophys. Res. Commun. 1997. 240. P. 68-74.
  40. Sagach V., Scrosati M., Fielding J. et al. The watersoluble vitamin E analogue trolox protects against ischemia-reperfusion damage in vitro and ex-vivo. A comparison with vitamin E // Pharmacol. Res. 2002. 45. P.435-439.
  41. Sastre J., Pallardo F.V., Garcia A.J. Mitochondria, oxidative stress and aging // Free Rad. Res. 2000. 32. P.189-198.
  42. Skulachev V.P. Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms // Mol. Asp. Med. 1999. 20. P.139-184.
  43. Wallace D.C. Mitochondrial defects in cardiomyopathy and neuromuscular disease // Amer. Heart. J. 2000. 139. P.S70-S85.
  44. Weiss J.N., Korge P., Honda H.M. et al. Role of the mitochondrialpermeabilty transition in myocardial disease //Circulat. Res. 2003. 93. P.292=301.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.