Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2015; 61(3): 99-117


Remote ischemic preconditioning versus intermittent hypoxia training: a comparative analysis for cardioprotection

T.V. Serebrovska1, V.B. Shatilo2

  1. O.O.Bogomoletz Institute of Physiology, Kyiv, Ukraine
  2. D.F. Chebotarev State Institute of Gerontology, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz61.03.099

Abstract

Ischemic preconditioning (IPC) is an adaptive phenomenon that occurs after one or more short periods of ischemia / reperfusion, and consists in increasing the tolerance of an organ or tissue to the damaging effect of a long period of ischemia / reperfusion. Although IPC was shown to have a protective effect in animal models or during operative interventions, the obvious difficulties involved in subjecting the heart to direct IPC restrict its potential clinical applications. In this perspective, the phenomenon of remote ischemic preconditioning (RIPC: ischemia/reperfusion cycles in the arm or leg) appears extremely encouraging. Intermittent hypoxic training (IHT, periodic exposure of an organism to hypoxic gas mixtures, or stay in the chamber or altitudes) also has powerful adaptogenic effect increasing the resistance to subsequent episodes of severe hypoxia / ischemia. This review discusses main mechanisms and clinical applications of RIPC in cardiology versus IHT technologies. Benefits and disadvantages of both methods are under consideration. Positive and negative effects of hypercapnia during the RIPC technology are also examined. We wish to stimulate a comprehensive understanding of such a complex physiological phenomenon as intermittent hypoxia and ischemic preconditioning in order to prevent or reduce their harmful consequences, while maximize their potential utility as an effective therapeutic tools.

Keywords: remote ischemic preconditioning, intermittent hypoxia training, hypoxic-hyperoxic training, cardiovascular diseases, adaptation to hypoxia, hypercapnia

References

  1. Prabhakar N.R., Semenza G.L. (2012). Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 92: 967–1003.
  2.  
  3. Semenza GL (2012) Foreword. In: Xi L, Serebrovskaya TV (eds). Intermittent Hypoxia and Human Diseases / Springer, UK, 2012, p. v.
  4.  
  5. Almendros I, Wang Y, Gozal D. The polymorphic and contradictory aspects of intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol. 2014 Jul 15;307(2):L129-40.
  6.  
  7. Yang C.C., Lin L.C., Wu M.S., Chien C.T., Lai M.K. Repetitive hypoxic preconditioning attenuates renal ischemia/ reperfusion induced oxidative injury via upregulating HIF-1 -dependent bcl-2 signaling. Transplantation. 2009; 88: 11: 1251–1260.
  8.  
  9. Chen W.J., Chen H.W., Yu S.L. et al. Gene expression profiles in hypoxic preconditioning using cDNA microarray analysis: altered expression of an angiogenic factor, carcinoembryonic antigen-related cell adhesion molecule 1. Shock. 2005; 24: 2: 124–131.
  10.  
  11. Semenov D.G., Samoilov M.O., Lazarewicz J.W. Preconditioning reduces hypoxia-evoked alterations in glutamatergic Ca2+ signaling in rat cortex. Acta Neurobiol. Exp. 2008; 68: 2: 169–179.
  12.  
  13. Maslov LN, Lishmanov IuB, Emel'ianova TV, Prut DA, Kolar F, Portnichenko AG, Podoksenov IuK, Khaliulin IG, Wang H, Pei JM. Hypoxic preconditioning as novel approach to prophylaxis of ischemic and reperfusion damage of brain and heart]. Angiol Sosud Khir. 2011;17(3):27-36.
  14.  
  15. Portnichenko AG, Vasilenko MI, Moĭbenko AA. [Hypoxic preconditioning prevents the induction and activation of 5-lipoxygenase during ischemia and reperfusion of rat heart]. Fiziol Zh. 2012;58(4):21-9.
  16.  
  17. Camporesi EM, Bosco G. Hyperbaric oxygen pretreatment and preconditioning. Undersea Hyperb Med. 2014 May-Jun;41(3):259-63
  18.  
  19. Rybnikova E., Gluschenko T., Tulkova E. et al. Preconditioning induces prolonged expression of transcription factors pCREB and NF-κB in the neocortex of rats before and following severe hypobaric hypoxia. J. Neurochem. 2008; 106: 3: 1450–1458.
  20.  
  21. Milano G, Corno AF, Samaja M, Morel S, Vassalli G, von Segesser LK. Daily reoxygenation decreases myocardial injury and improves post-ischaemic recovery after chronic hypoxia. Eur J Cardiothorac Surg. 2010 Apr;37(4):942-9.
  22.  
  23. Vasdekis SN, Athanasiadis D, Lazaris A, Martikos G, Katsanos AH, Tsivgoulis G, Machairas A, Liakakos T. The role of remote ischemic preconditioning in the treatment of atherosclerotic diseases. Brain Behav. 2013 Nov;3(6):606-16.
  24.  
  25. Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardiopro tection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev. 2014 Oct;66(4):1142-74.
  26.  
  27. Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y. Preconditioningprovides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol. 2014 Mar;114:58-83.
  28.  
  29. Golpich M, Rahmani B, Mohamed Ibrahim N, Dargahi L, Mohamed Z, Raymond AA, Ahmadiani A. Preconditioning as a potential strategy for the prevention of Parkinson's disease. Mol Neurobiol. 2015 Feb;51(1):313-30.
  30.  
  31. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136. CrossRef  
  32. Schott RJ, Schaper W. Ischemic preconditioning and myocardial stunning: related consequences of brief coronary occlusion and reperfusion? Adv Cardiol. 1990;37:32-41
  33.  
  34. Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol. 2001 Nov;33(11):1897-918.
  35.  
  36. Hausenloy DJ, Candilio L, Laing C, Kunst G, Pepper J, Kolvekar S, Evans R, Robertson S, Knight R, Ariti C, Clayton T, Yellon DM;ERICCA Trial Investigators. Effect of remote ischemic preconditioning on clinical outcomes in patients undergoing coronary artery bypass graft surgery (ERICCA): rationale and study design of a multi-centre randomized double-blinded controlled clinical trial. Clin Res Cardiol (2012) 101:339–348.
  37.  
  38. Bousselmi R, Lebbi MA,and Ferjani M. Myocardial ischemic conditioning: Physiological aspects and clinical applications in cardiac surgery. J Saudi Heart Assoc. Apr 2014; 26(2): 93–100.
  39.  
  40. Eckle T, et al. (2012) Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med 18(5):774–782 CrossRef PubMed PubMedCentral
  41.  
  42. Liu GS, Thornton J, Van Winkle DM, Stanley AWH, Olsson RA, and Downey JM. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84: 350–356, 1991.
  43.  
  44. Philipp S, Yang X-M, Cui L, Davis AM, Downey JM, Cohen MV. Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade.Cardiovasc Res. 2006;70:308–314. CrossRef PubMed
  45.  
  46. Goto M, Liu Y, Yang X-M, Ardell JL, Cohen MV, and Downey JM. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res 77: 611–621, 1995.
  47.  
  48. Saxena P, Aggarwal S, Misso NL, Passage J, Newman MA, Thompson PJ, d'Udekem Y, Praporski S, Konstantinov IE. Remote ischaemic preconditioning down-regulates kinin receptor expression in neutrophils of patients undergoing heart surgery. Interact Cardiovasc Thorac Surg. 2013 Oct;17(4):653-8.
  49.  
  50. Zager RA, Baltes LA, Sharma HM, Jurkowitz MS. Responses of the ischemic acute renal failure kidney to additional ischemic events. Kidney Int. 1984;26:689-700. CrossRef PubMed
  51.  
  52. Mounsey RA, Pang CY, Forrest C. Preconditioning: a new technique for improved muscle flap survival. Otolaryngol Head Neck Surg.1992;107:549-552
  53.  
  54. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K, Kamada T. 'Ischemic tolerance' phenomenon found in the brain. Brain Res. 1990;528:21-24. CrossRef  
  55. Lloris-Carsi JM, Cejalvo D, Toledo-Pereyra LH, Calvo MA, Suzuki S. Preconditioning: effect upon lesion modulation in warm liver ischemia.Transplant Proc. 1993;25:3303-3304
  56.  
  57. Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD (1996) Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94(9):2193– 2200. CrossRef  
  58. Dezfulian C1, Garrett M, Gonzalez NR Clinical application of preconditioning and postconditioning to achieve neuroprotection. Transl Stroke Res. 2013 Feb;4(1):19-24.
  59.  
  60. Hausenloy DJ, Yellon DM (2008) Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res 79:377–386. CrossRef PubMed
  61.  
  62. Gill R , Kuriakose R, Gertz ZM, Salloum FN, Xi L, Kukreja RC. Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance. Mol Cell Biochem. 2015 Apr;402(1-2):41-9.
  63.  
  64. Pell TJ, Baxter GF, Yellon DM, Drew GM (1998) Renal ischemia preconditions myocardium: role of adenosine receptors and ATPsensitive potassium channels. Am J Physiol 275:H1542–H1547.
  65.  
  66. Tang ZL, Dai W, Li YJ, Deng HW (1999) Involvement of capsaicin- sensitive sensory nerves in early and delayed cardioprotection induced by a brief ischaemia of the small intestine. Naunyn Schmiedebergs Arch Pharmacol 359:243–247 CrossRef PubMed
  67.  
  68. Schoemaker RG, van Heijningen CL (2000) Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol 278:H1571–H1576.
  69.  
  70. Patel HH, Moore J, Hsu AK, Gross GJ (2002) Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. J Mol Cell Cardiol 34:1317–1323 CrossRef PubMed
  71.  
  72. Hajrasouliha AR, Tavakoli S, Ghasemi M, JabehdarMaralani P, Sadeghipour H, Ebrahimi F, Dehpour AR (2008) Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart. Eur J Pharmacol 579:246–252 CrossRef PubMed
  73.  
  74. Addison PD , Neligan PC, Ashrafpour H, Khan A, Zhong A, Moses M, Forrest CR, Pang CYNoninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am J Physiol Heart Circ Physiol. 2003 Oct;285(4):H1435-43.
  75.  
  76. Peart JN, Gross ER, Gross GJ. Opioid-induced preconditioning: recent advances and future perspectives. Vascul. Pharmacol. 2005;42:211–218.
  77.  
  78. Corti P, Gladwin MT (2014) Is nitrite the circulating endocrine effector of remote ischemic preconditioning? Circ Res 114:1554–1557.
  79.  
  80. Osswald H , Moerike K. Remote conditioning in clinical practice: a type of distant healing? Cardiology. 2011;119(4):214-6
  81.  
  82. Kristiansen SB, Nielsen-Kudsk JE, Bøtker HE, Nielsen TT. Effects of KATP channel modulation on myocardial glycogen content, lactate, and amino acids in nonischemic and ischemic rat hearts. J Cardiovasc Pharmacol. 2005 May;45(5):456-61.
  83.  
  84. Hausenloy DJ (2013) Cardioprotection techniques: preconditioning, postconditioning and remote conditioning (basic science). Curr Pharm Des 19:4544–4563. CrossRef PubMed
  85.  
  86. Zhou B, Zhang PJ, Tian T, Jin C, Li Y, Feng M, Liu XY, Jie L, Tao LD. Role of vascular endothelial growth factor in protection of intrahepatic cholangiocytes mediated by hypoxic preconditioning after liver transplantation in rats. Transplant Proc. 2010 Sep;42(7):2457-62
  87.  
  88. Li J, Xuan W, Yan R, Tropak MB, Jean St Michel E, Liang W, Gladstone R, Backx PH, Kharbanda RK, Redington AN. Remote preconditioning provides potent cardioprotection via PI3K/AKT activation and is associated with nuclear accumulation of beta-catenin. Clin Sci (Lond). 2011; 120:451-462. CrossRef PubMed
  89.  
  90. Diwan V, Kant R, Jaggi AS, Singh N, Singh D (2008) Signal mechanism activated by erythropoietin preconditioning and remote renal preconditioning-induced cardioprotection. Mol Cell Biochem 315:195–201. CrossRef PubMed
  91.  
  92. Jones WK, Fan GC, Liao S, Zhang JM, Wang Y, Weintraub NL, Kranias EG, Schultz JE, Lorenz J, Ren X (2009) Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation 120:S1–S9
  93.  
  94. Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, et al.. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 2002;106(23):2881–3. CrossRef PubMed
  95.  
  96. Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol. 2005 Aug 2;46(3):450-6.
  97.  
  98. Konstantinov IE , Arab S, Kharbanda RK, Li J, Cheung MM, Cherepanov V, Downey GP, Liu PP, Cukerman E, Coles JG, Redington AN. The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genomics. 2004 Sep 16;19(1):143-50.
  99.  
  100. Park KM, Chen A, Bonventre JV. Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment. J Biol Chem. 2001 Apr 13;276(15):11870-6.
  101.  
  102. Heidbreder M, Naumann A, Tempel K, Dominiak P, Dendorfer A. Remote vs. ischaemic preconditioning: the differential role of mitogen-activated protein kinase pathways. Cardiovasc Res. 2008 Apr 1;78(1):108-15.
  103.  
  104. Hausenloy DJ, Lecour S, Yellon DM (2011) Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 14:893–907. CrossRef PubMed
  105.  
  106. Thielmann M, et al. (2013) Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: A single-centre randomised, double-blind, controlled trial. Lancet 382(9892):597–604. CrossRef  
  107. Kalakech H, Tamareille S, Pons S, Godin-Ribuot D, Carmeliet P, Furber A, Martin V, Berdeaux A, Ghaleh B, Prunier F. Role of hypoxia inducible factor-1α in remote limb ischemic preconditioning.J Mol Cell Cardiol. 2013 Dec;65:98-104
  108.  
  109. Cai Z, Luo W, Zhan H, Semenza GL.Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart. Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17462-7.
  110.  
  111. Albrecht M, Zitta K, Bein B, Wennemuth G, Broch O, Renner J, Schuett T, Lauer F, Maahs D, Hummitzsch L, Cremer J, Zacharowski K, Meybohm P (2013) Remote ischemic preconditioning regulates HIF-1alpha levels, apoptosis and inflammation in heart tissue of cardiosurgical patients: a pilot experimental study. Basic Res Cardiol 108:314 CrossRef PubMed
  112.  
  113. Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev. 2014 Oct;66(4):1142-74.
  114.  
  115. Günaydin B, Cakici I, Soncul H, Kalaycioglu S, Cevik C, Sancak B, Kanzik I, Karadenizli Y. Does remote organ ischaemia trigger cardiac preconditioning during coronary artery surgery? Pharmacol Res. 2000 Apr;41(4):493-6.
  116. Cheung M.M., Kharbanda R.K., Konstantinov I.E., Shimizu M., Frndova H., Li J. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol. 2006;47(11):2277–2282 CrossRef PubMed
  117.  
  118. Jones BO, Pepe S, Sheeran FL, Donath S, Hardy P, Shekerdemian L, Penny DJ, McKenzie I, Horton S, Brizard CP, d'Udekem Y, Konstantinov IE,Cheung MM. Remote ischemic preconditioning in cyanosed neonates undergoing cardiopulmonary bypass: a randomized controlled trial.J Thorac Cardiovasc Surg. 2013 Dec;146(6):1334-40.
  119.  
  120. Takagi H., Umemoto T. Remote ischemic preconditioning for cardiovascular surgery: an updated meta-analysis of randomized trials. Vasc Endovascular Surg. 2011; 45(6):511–513. CrossRef PubMed
  121.  
  122. Manchurov V, Ryazankina N, Khmara T, Skrypnik D, Reztsov R, Vasilieva E2, Shpektor A. Remote ischemic preconditioning and endothelial function in patients with acute myocardial infarction and primary PCI. Am J Med.2014 Feb 21
  123.  
  124. Slagsvold KH, Rognmo O, Høydal M, Wisløff U, Wahba A. Remote ischemic preconditioning preserves mito chondrial function and influences myocardial microRNA expression in atrial myocardium during coronary bypass surgery. Circ Res. 2014 Feb 28;114(5):851-9.
  125.  
  126. Pavione MA , Carmona F, de Castro M, Carlotti AP. Late remote ischemic preconditioning in children undergoing cardiopulmonary bypass: a randomized controlled trial. J Thorac Cardiovasc Surg. 2012 Jul;144(1):178-83.
  127.  
  128. Wider J, Przyklenk K. Ischemic conditioning: the challenge of protecting the diabetic heart. Cardiovasc Diagn Ther. 2014 Oct;4(5):383-396.
  129.  
  130. Savaj S, Savoj J, Jebraili I, Sezavar SH. Remote Ischemic Preconditioning for Prevention of Contrast-induced Acute Kidney Injury in Diabetic Patients. Iran J Kidney Dis. 2014 Nov;8(6):457-60.
  131.  
  132. Camara-Lemarroy CR. Remote ischemic preconditioning as prevention of transfusion-related acute lung injury. Med Hypotheses. 2014 Sep;83(3):273-5.
  133.  
  134. Jean-St-Michel E, Manlhiot C, Li J, Tropak M, Michelsen MM, Schmidt MR, McCrindle BW, Wells GD, Redington AN. Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc. 2011 Jul;43(7):1280-6.
  135.  
  136. de Groot PC, Thijssen DH, Sanchez M, Ellenkamp R, Hopman MT. Ischemic preconditioning improves maximal performance in humans. Eur J Appl Physiol. 2010 Jan;108(1):141-6.
  137.  
  138. Bailey TG, Birk GK, Cable NT, Atkinson G, Green DJ, Jones H, Thijssen DH. Remote ischemic preconditioning prevents reduction in brachial artery flow-mediated dilation after strenuous exercise. Am J Physiol Heart Circ Physiol. 2012 Sep 1;303(5):H533-8.
  139.  
  140. Kjeld T, Rasmussen MR, Jattu T, Nielsen HB, Secher NH. Ischemic preconditioning of one forearm enhances static and dynamic apnea. Med Sci Sports Exerc. 2014 Jan;46(1):151-5.
  141.  
  142. Barbosa TC , Machado AC, Braz ID, Fernandes IA, Vianna LC, Nobrega AC, Silva BM. Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scand J Med Sci Sports. 2014 Apr 15 [Epub ahead of print].
  143.  
  144. Cheung M.M., Kharbanda R.K., Konstantinov I.E., Shimizu M., Frndova H., Li J. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol. 2006;47(11):2277–2282. CrossRef PubMed
  145.  
  146. Berger MM , Köhne H , Hotz L , Hammer M , Schommer K , Bärtsch P , Mairbäurl H. Remote ischemic preconditioning delays the onset of acute mountain sickness in normobaric hypoxia. Physiol Rep. 2015 Mar;3(3). pii: e12325.
  147.  
  148. Lalonde F , Curnier DY. Can anaerobic performance be improved by remote ischemic preconditioning? J Strength Cond Res. 2015 Jan;29(1):80-5.
  149.  
  150. Twine CP, Ferguson S, Boyle JR. Benefits of remote ischaemic preconditioning in vascular surgery. Eur J Vasc Endovasc Surg. 2014 Aug;48(2):215-9.
  151.  
  152. Basovich SN. Trends in the use of preconditioning to hypoxia for early prevention of future life diseases. Biosci Trends. 2013 Feb;7(1):23-32.
  153.  
  154. Prokopov AF. Intermittent Hypoxia and Health: From Evolutionary Aspects to Mitochondria Rejuvenation. In: Lei Xi & Tatiana V. Serebrovskaya (Eds). Intermittent Hypoxia and Human Diseases / Springer, UK, 2012, Chapter 21, p. 253-269.
  155.  
  156. Xi L, Serebrovskaya TV (Eds). Intermittent Hypoxia: From Molecular Mechanisms to Clinical Applications. Nova Science Publishers NY. 2009; 602 pp.
  157.  
  158. Xi L, Serebrovskaya T (eds) (2012) Intermittent hypoxia and human diseases. Springer, London, 316 pp.
  159.  
  160. Serebrovskaya TV, Nosar VI, Bratus LV, Gavenauskas BL, Mankovska IM. Tissue oxygenation and mitochondrial respiration under different modes of intermittent hypoxia. High Alt Med Biol. 2013 Sep;14(3):280-8.
  161.  
  162. Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol. 2014 Nov 15;307(10):R1181-97.
  163.  
  164. Rafibekova Zh, Dzhumangulova AS, Usubaliev NN, Abramovich EM. Treatment of hypertension disease by hypobaric barochamber hypoxia and middle altitudes. In: IX Congress of Therapeutists, abstract vol. 3, Tashkent, pp. 29-31, 1987.
  165.  
  166. Meerson F.Z., Tverdokhlib V.P., Soev V.M. (1989). [Adaptation to periodic hypoxia in therapy and prophylaxis]. Moscow: Nauka, 70 pp [Russian].
  167.  
  168. Ushakov IB, Cherniakov IN, Shishov AA, Olenev NI. [Hypobaric variant of interval hypoxic training in aerospace medicine]. Voen Med Zh. 2003 Feb;324(2):54-7.
  169.  
  170. Gao L, Chen L, Lu ZZ, Gao H, Wu L, Chen YX, Zhang CM, Jiang YK, Jing Q, Zhang YY, Yang HT. Activation of α1B-adrenoceptors contributes to intermittent hypobaric hypoxia-improved postischemic myocardial performance via inhibiting MMP-2 activation. Am J Physiol Heart Circ Physiol. 2014 Jun 1;306(11):H1569-81.
  171.  
  172. Esteva S , Panisello P, Ramon Torrella J, Pages T, Viscor G. Enzyme activity and myoglobin concentration in rat myocardium and skeletal muscles after passive intermittentsimulated altitude exposure. J Sports Sci. 2009 Apr;27(6):633-40.
  173.  
  174. Li RC, Lee SK, Pouranfar F, Brittian KR, Clair HB, Row BW, Wang Y, Gozal D. Hypoxia differentially regulates the expression of neuroglobin and cytoglobin in rat brain. Brain Res. 2006 Jun 22;1096(1):173-9.
  175.  
  176. Mackenzie R, Watt P & Castle P. Acute hypoxia and exercise improve insulin sensitivity SI2* in individuals with type 2 diabetes. Endocrine Abstracts (2009) 19 P162.1
  177.  
  178. Zhang JZ BA, Ismail-Beigi F. Regulation of glucose transport by hypoxia. Am J Kidney Dis. 1999 Jul;34(1):189-202.
  179.  
  180. Prabhakar NR FR, Baker T, Fletcher EC.Intermittent hypoxia: cell to system. Am J Physiol Lung Cell Mol Physiol. 2001 Sep;281(3):L524-8.
  181.  
  182. Nanduri J, Vaddi DR, Khan SA, Wang N, Makarenko V, Semenza GL, Prabhakar NR. HIF-1α activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS One. 2015 Mar 9;10(3):e0119762.
  183.  
  184. Brugniaux JV, Pialoux V, Foster GE, Duggan CT, Eliasziw M, Hanly PJ, Poulin MJ. Effects of intermittent hypoxia on erythropoietin, soluble erythropoietin receptor and ventilation in humans. Eur Respir J , 2011 Apr;37(4):880-7
  185.  
  186. Dale EA, Mitchell GS. Spinal vascular endothelial growth factor (VEGF) and erythropoietin (EPO) induced phrenic motor facilitation after repetitive acute intermittent hypoxia. Respir Physiol Neurobiol. 2013 Feb 1;185(3):481-8.
  187.  
  188. Zhong N, Zhang Y, Zhu HF, Zhou ZN.. Intermittent hypoxia exposure prevents mtDNA deletion and mitochondrial structure damage produced by ischemia/reperfusion injury. Sheng Li Xue Bao. 2000 Oct;52(5):375-80.
  189.  
  190. Yeh CH, Hsu SP, Yang CC, Chien CT, Wang NP. Hypoxic preconditioning reinforces HIF-alpha-dependent HSP70 signaling to reduce ischemic renal failure-induced renal tubular apoptosis and autophagy. Life Sci. 2010 Jan 16;86(3-4):115-23.
  191.  
  192. Xinghe Wang JD, David W Boyle, Jin Zhong and WeiHua Lee. Potential Role of IGF-I in Hypoxia Tolerance Using a Rat Hypoxic-Ischemic Model: Activation of Hypoxia-Inducible Factor 1ά. Pediatric Research (2004) 55, 385–394.
  193.  
  194. Wang X, Deng J, Boyle DW, Zhong J, Lee WH. Potential role of IGF-I in hypoxia tolerance using a rat hypoxicischemic model: activation of hypoxia-inducible factor 1alpha. Eur Respir J. 2011 Apr;37(4):880-7.
  195.  
  196. Steshenko MM, Gonchar OO, Mankovska MI. Mitochondrial oxidative violations during hypoxia and its correction by means of interval hypoxic-hyperoxic training. Exper & Clin Physiol and Biochem. 2010; (1): 12-17.
  197.  
  198. Mankovska IM, Serebrovskaya TV. Mitochondria as a target of intermittent hypoxia: a review . Fiziol.Zh, 2014, 60 (6):75-86.
  199.  
  200. Manukhina EB, Pshennikova MG, Malyshev IYu, Mallet RT, and Downey HF. Protective Effects of Adaptation to Hypoxia in Experimental Alzheimer's Disease. In: Lei Xi & Tatiana V. Serebrovskaya (Eds). Intermittent Hypoxia and Human Diseases / Springer, UK, 2012, Chapter 13, p. 155-171.
  201.  
  202. Serebrovskaya TV, Nikolsky IS, Nikolska VV, Mallet RT, Ishchuk VA . Intermittent hypoxia mobilizes hematopoietic progenitors and augments cellular and humoral elements of innate immunity in adult men. High Alt Med Biol. 2011;12(3):243-52. CrossRef PubMed PubMedCentral
  203.  
  204. Wang H, Yuan G, Prabhakar NR, Boswell M, Katz DM.Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. J Neurochem. 2006 Feb;96(3):694-705.
  205.  
  206. Lukyanova L.D., Kirova Yu. I., and Germanova E.L. Energotropic Effects of Intermittent Hypoxia: Role of Succinate-Dependent Signaling. In: Lei Xi & Tatiana V. Serebrovskaya [Eds]. Intermittent Hypoxia and Human Diseases. Springer, UK, 2012, Chapter 20, pp. 239-252.
  207.  
  208. Muscari C GE, Bonafe F, Govoni M, Pasini A, Guarnieri C. Priming adult stem cells by hypoxic pretreatments for applications in regenerative medicine. J Biomed Sci. 2013 Aug 29;20:63.
  209.  
  210. Rozova K.V., Mankovska I.N. [2012]. Effect of intermittent hypoxic training on lung and heart tissues of healthy rats. Pneumonologia i Alergologia Polska. 80[4]: 296-300.
  211.  
  212. Lane SW DAWD, and Watt FM. Modulating the stem cell niche for tissue regeneration. Nature Biotechnology, 2014, 32: 795–803.
  213.  
  214. Rennert RC SM, Garg RK, Gurtner GC. Stem cell recruitment after injury: lessons for regenerative medicine. Regen Med. 2012 Nov;7(6):833-50.
  215.  
  216. Wee J, Climstein M. Hypoxic training: Clinical benefits on cardiometabolic risk factors. J Sci Med Sport. 2015 Jan;18(1):56-61.
  217.  
  218. Serebrovska TV, Shatilo VB. Use of intermittent hypoxia for the prevention and treatment of cardiovascular diseases. Review. Circulation and hemostasis, 2014, # 1-2, 16-33 [in Ukrainian].
  219.  
  220. Rachok LV, Dubovik TA, Bulgak AG, Ostrovsky YP, Kolyadko MG, Belskaya MI, Zhujko EN, Russkikh II. The effects of using normobaric intermittent hypoxia training as a method of preoperative preparation for coronary bypass surgery of the ischemic cardiomyopathie patients. Cardiology in Belarus. 2011; 17:28-45.
  221.  
  222. Nudelman LM. Interrupted normobaric hypoxytherapy in preoperational preparation of the patients. In: Normobaric hypoxytherapy in oncology (Strelkov RB, ed.). Bumazhnaya galereia Publishers, Moscow, Russia, 2003; pp. 61-69.
  223.  
  224. Pilyavskaya AN, Adiyatullin AI, Tkachouk EN. Interval hypoxic training in preparation to planned abdominal delivery. 2. Effect of the free radical-mediated oxidation parameters in blood plasma of pregnant women, in umbilical blood and in placenta. Hypoxia Medical Journal. 1997; 5:14-17.
  225.  
  226. Korkushko O.V., Shatilo V.B., Ishchuk V.A. Efficacy of intermittent normobaric hypoxic trainings in elderly patients with essential hypertension. Bulletin of Hygiene and Epidemiology. 2007; 11(1):14–17. [In Ukrainian]
  227.  
  228. Korkushko OV, Shatilo VB, Ishchuk VA, Tourta MI. .USE OF intermittent normobaric hypoxia trainings in elderly people. In: Xi L, Serebrovskaya TV (Eds). Intermittent hypoxia: from molecular mechanisms to clinical applications. Nova Science Publishers, Inc, New York, 2009; Chapter 28, p. 537-548.
  229.  
  230. Korkushko OV, Shatilo VB, Ishchuk VA. [Effectiveness of intermittent normabaric hypoxic trainings in elderly patients with coronary artery disease]. Adv Gerontol. 2010;23(3):476-82.
  231.  
  232. Lopata VA and Serebrovskaya TV. Hypoxicators: Review of the Operating Principles and Constructions. In: Lei Xi & Tatiana V. Serebrovskaya (Eds). Intermittent Hypoxia and Human Diseases / Springer, UK, 2012, Chapter 24, 281-289.
  233.  
  234. Tkachouk EN, Tsyganova TN, Staebler R. Apparatus for producing a hypoxic gaseous mixture using hollow fibers of poly-4-methilpenthene-1. US Patent 5,383,448, A62B 7/10, 24 Jan 1995.
  235.  
  236. Nemerovski LI. Construction principles of apparatus for intermittent normobaric hypoxia. Med Technika. 1992;1:3–8 [In Russian].
  237.  
  238. Arkhipenko YV, Sazontova TG, Zhukova AG. Adaptation to periodic hypoxia and hyperoxia improves resistance of membrane structures in heart, liver, and brain. Bull Exp Biol Med. 2005 Sep;140(3):278-81.
  239.  
  240. Glazachev OS, Zvenigorodskaia LA, Dudnik EN, Iartseva LA, Mishchenkova TV, Platonenko AV, Spirina GK. Interval hypoxic-hyperoxic training in the treatment of the metabolic syndrome. Eksp Klin Gastroenterol. 2010; 7:51-56.
  241.  
  242. Sazontova TG, Bolotova AV, Bedareva IV, Kostina NV, and Arkhipenko YuV. Adaptation to intermittent hypoxia/ hyperoxia enhances efficiency of exercise training. In: Lei Xi & Tatiana V. Serebrovskaya (Eds). Intermittent Hypoxia and Human Diseases / Springer, UK, 2012, Chapter 16, p. 191-205.
  243.  
  244. Gonchar O, Mankovska I. Moderate hypoxia/hyperoxia attenuates acute hypoxia-induced oxidative damage and improves antioxidant defense in lung mitochondria. Acta Physiol Hung. 2012 Dec;99(4):436-46.
  245.  
  246. ArchipenkoYuA, Sazontova TG, Glazachev OS, Platonenko VI. Method of increasing the non-specific adaptive capacities of a person based on hypoxic-hyperoxic gas mixtures. The patent for the invention RU ; 2289432, published 20.12.2006.
  247.  
  248. Kostin A.I., Glazachev O.S., Platonenko A.V., Spirina G.K. Device for carrying out complex interval normobarichypoxic-hyperoxic trainings of the person. Patent of the Russian Federation for the invention N2365384 from August, 27th, 2009 (the Application 2008104330).
  249.  
  250. Lemasters JJ, Bond JM, Chacon E et al (1996) The pH paradox in ischaemia-reperfusion injury to cardiac myocytes. EXS 76:99–114.
  251.  
  252. Sharma V, Cunniffe B, Verma AP, Cardinale M, Yellon D. Characterization of acute ischemia-related physiological responses associated with remote ischemic preconditioning: a randomized controlled, crossover human study. Physiol Rep. 2014 Nov 20;2(11).
  253.  
  254. Xia Z, Herijgers P, Nishida T, Ozaki S, Wouters P, Flameng W. Remote preconditioning lessens the deterioration of pulmonary function after repeated coronary artery occlusion and reperfusion in sheep. Can J Anaesth. 2003 May;50(5):481-8.
  255.  
  256. Kim JC, Shim JK, Lee S, Yoo YC, Yang SY, Kwak YL. Effect of combined remote ischemic preconditioning and postconditioning on pulmonary function in valvular heart surgery. Chest. 2012 Aug;142(2):467-75.
  257.  
  258. Levitzky M. The control of breathing. In: Levitzky MG, editor. Pulmonary physiology. 7th ed. New York: The McGraw-Hill Companies, Inc.; 2007, pp. 49–56.
  259.  
  260. Pokorski M. & Serebrovskaya T. . Intermittent Hypercapnia. In: Intermittent Hypoxia: From Molecular Mechanisms to Clinical Applications/. Editors: Lei Xi & Tatiana V. Serebrovskaya/ Nova Science Publishers, 2009: 261-273.
  261.  
  262. Sharabi K., E. Lecuona, I.T. Helenius, G.J. Beitel, J.I. Sznajder, Y. Gruenbaum, Sensing, physiological effects and molecular response to elevated CO2 levels in eukaryotes. Journal of Cellular and Molecular Medicine 13 (2009) 4304–4318.
  263.  
  264. Eiam-ong S, Laski ME, Kurtzman NA, et al. Effect of respiratory acidosis and respiratory alkalosis on renal transport enzymes. Am J Physiol Renal Physiol. 1994; 267: F390–9
  265.  
  266. Zippin JH, Farrell J, Huron D, et al. Bicarbonate-responsive "soluble" adenylyl cyclase defines a nuclear cAMP microdomain. J Cell Biol. 2004; 164: 527–34. CrossRef PubMed PubMedCentral
  267.  
  268. Jankov,R.P.;Lewis,P.;Kantores,C.;Ivanovska,J.;Xu,E.Z., VanVliet,T.;Lee,A. H.; Tanswell A.K., McNamara,P.J. Peroxynitrite mediates right-ventricular dysfunction in nitric oxide-exposed juvenile rats. Free Radic.Biol.Med. 2010, 49:1453–1467.
  269.  
  270. Vadasz I, Dada LA, Briva A, et al. AMPactivated protein kinase regulates CO2- induced alveolar epithelial dysfunction in rats and human cells by promoting Na,KATPase endocytosis. J Clin Invest. 2008; 118: 752–62.
  271.  
  272. Fu P, Sheng B, Li G. Enhancement of hypoxia tolerance and survival rate of Daphnia in severe hypoxia based on acidic preconditioning. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2012 Dec;29(6):1160-7.
  273.  
  274. Dunlop K, Gosal K, Kantores C, Ivanovska J, Dhaliwal R, Desjardins JF, Connelly KA, Jain A, McNamara PJ, Jankov RP. Therapeutic hypercapnia prevents inhaled nitric oxide-induced right-ventricular systolic dysfunction in juvenile rats. Free Radic Biol Med. 2014 Apr;69:35-49.
  275.  
  276. Belik J.; Stevens,D.;Pan,J.;Shehnaz,D.;Ibrahim,C.;Kantores,C.;Ivanovska, J. Grasemann,H.;Jankov,R.P.Chronic hypercapnia downregulates arginase expression and activity and increases pulmonary arterial smooth muscle relaxation in the newborn rat. Am. J.Physiol.LungCell. Mol.Physiol 297:L777–784; 2009.
  277.  
  278. Sewing AC, Kantores C, Ivanovska J, Lee AH, Masood A, Jain A, McNamara PJ, Tanswell AK, Jankov RP. Therapeutic hypercapnia prevents bleomycin-induced pulmonary hypertension in neonatal rats by limiting macrophage-derived tumor necrosis factor-α. Am. J.Physiol. Lung.Cell.Mol.Physiol. 2012, 303:L75–87.
  279.  
  280. Wu X, Liu X, Zhu X, Tang C. Hypoxic preconditioning induces delayed cardioprotection through p38 MAPK-mediated calreticulin upregulation. Shock. 2007 May;27(5):572-7.
  281.  
  282. Zhang CH, Fan YY, Wang XF, Xiong JY, Tang YY, Gao JQ, Shen Z, Song XH, Zhang JY, Shen Y, Li Q, Zhang X, Chen Z. Acidic preconditioning protects against ischemia-induced brain injury. Neurosci Lett. 2012 Aug 8;523(1):3-8.
  283.  
  284. Ladilov Y. Preconditioning with hypercapnic acidosis: hope for the ischemic brain. Neurosci Lett. 2012 Aug 8;523(1):1-2.
  285.  
  286. Zhang P, Shi X , Downey HF. Two-week normobaric intermittent-hypoxic exposures stabilize cerebral perfusion during hypocapnia and hypercapnia. Exp Biol Med (Maywood). 2014 Dec 11 [Epub ahead of print].
  287.  
  288. Fan JL, Kayser B. The effect of adding CO2 to hypoxic inspired gas on cerebral blood flow velocity and breathing during incremental exercise. PLoS One. 2013 Nov 21;8(11):e81130.
  289.  
  290. Snow JB, Kitzis V, Norton CE, Torres SN, Johnson KD, Kanagy NL, Walker BR, Resta TC. Differential effects of chronic hypoxia and intermittent hypocapnic and eucapnic hypoxia on pulmonary vasoreactivity. J Appl Physiol. 2008;104:110–118. CrossRef PubMed
  291.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.