Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2015; 61(3): 90-98


NONLINEAR ELECTROENCEPHALOGRAPHIC CORRELATES OF AUDITORYMOTOR INTEGRATION IN BOYS WITH OBTAINED VISUAL DYSFUNCTION

I.V. Redka,1 О.YU. Mayorov1,2,3

  1. V. N. Karazin Kharkiv National University, Ukrane;
  2. Kharkiv Medical Academy, Ukrane Postgraduate Education, Ukrane;
  3. Institute of Health of children and adolescents NAMS of Ukrane
DOI: https://doi.org/10.15407/fz61.03.090

Abstract

This research aims to study the nonlinear dynamics of the brain electrical activity in the performance of complex auditory-motor choice reaction. The boys with obtained visual dysfunction (n = 27, vis. OS 0,70 ± 0,04, vis. OD 0,56 ± 0,05 with correction) and normal sighted (n = 27) boys aged from 8 to 12 years were examined. Nonlinear parameters such as embedding dimension, correlation dimension, Lyapunov maximum exponent and Kolmogorov-Sinai entropy were determined. The auditory-motor integration are induced the activation of the right occipital area and the deactivation of the left occipital area in boys with obtained visual dysfunction. This is not typical for the sighted boys. The results are discussed in the context of cross-modal plasticity and supramodal brain organization.

Keywords: visual dysfunction, EEG, nonlinear dynamics, auditory-motor integration, cross-modality, supramodality.

References

  1. Noppeney U, Friston KJ, Ashburner J., Frackowiak R, Price CJ. Early visual deprivation induces structural plasticity in gray and white matter. Curr. Biol. 2005 Jul; 15(13):488-90.
  2.  
  3. Veraart C, De Volder AG, Wanet-Defalque MC, Bol A, Michel C, Goffinet AM. Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset. Brain Res. 1990 Feb; 510(1):115-21.
  4.  
  5. Rozhkova LA. The using EEG to assess the functional state of the brain of children and adolescents with sensory impairments and their correction. In: Grigoryeva LP editor. Children with developmental problems (complex diagnostics and correction). Moscow: PCC "Akademkniga"; 2002. p. 158-207. [Russian].
  6.  
  7. Mayorov OYu, Glukhov AB., Fenchenko VN, Prognimak AB. Realization of delay method with help of estimation of attractor axes sizes by one-dimensional realization of the brain dynamic system. Cybernetics and Computer Science. 2007; 153:3-11. [Russian].
  8.  
  9. Mayorov OYu, Fenchenko VN. Researching of the brain bioelectrical activity from positions of multidimensional linear and nonlinear EEG analysys. Clin Inform Telemed. 2008 Jun; 4(5):12-20. [Russian].
  10.  
  11. Moerel M, De Martino F, Formisano E. An anatomical and functional topography of human auditory cortical areas. Front Neurosci [Internet]. 2014 Jul [cited 2014 Dec 15];8:225: [about 14 pp.]. Available from: http:. www.ncbi.nlm.nih.gov/pmc/articles/PMC4114190/.
  12.  
  13. Beauchamp MS, Yasar NE, Frye RE, Ro T. Touch, sound and vision in human superior temporal sulcus . Neuroimage. 2008 Jul; 41 (3):1011-20.
  14.  
  15. Renier LA, Anurova I, De Volder AG, Carlson S, VanMeter J, Rauschecker JP. Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind. Neuron. 2010 Oct; 68(1):138-48.
  16.  
  17. Van der Lubbe RH, Van Mierlo CM, Postma A. The involvement of occipital cortex in the early blind in auditory and tactile duration discrimination tasks. J. Cogn Neurosci. 2010 Jul; 22(7):1541-56.
  18.  
  19. Voss P, Gougoux F, Zatorre RJ, Lassonde M, Lepore F. Differential occipital responses in early- and late-blind individuals during a sound-source discrimination task. NeuroImage. 2008 Apr; 40(2):746-58.
  20.  
  21. Striem-Amit E, Dakwar O, Reich L, Amedi A. The largescale organization of ''visual'' streams emerges without visual experience. Cereb Cortex. 2012 Jul; 22(7):1698- 1709.
  22.  
  23. Karlen SJ, Kahn DM, Krubitzer L. Early blindness results in abnormal corticocortical and thalamocortical connections. Neuroscience. 2006 Oct; 142(3):843-58.
  24.  
  25. Larsen DD, Luu JD, Burns ME, Krubitzer L. What are the effects of severe visual impairment on the cortical organization and connectivity of primary visual cortex? Front Neuroanat [Internet]. 2009 Dec [cited 2014 Dec 15];3:30:[about 16 pp.]. Available from: http:.www.ncbi. nlm.nih.gov/pmc/articles/PMC2802552.
  26.  
  27. Cappe C, Barone P. Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. Eur. J. Neurosci. 2005 Dec; 22(11):2886-902.
  28.  
  29. Falchier A, Clavagnier S, Barone P, Kennedy H. Anatomical evidence of multimodal integration in primate striate cortex. J. Neurosci. 2002 Jul; 22(13):5749-5759.
  30.  
  31. Allman BL, Keniston LP, Meredith MA. Not just for bimodal neurons anymore: The contribution of unimodal neurons to cortical multisensory processing. Brain Topogr. 2009 May; 21(3-4):157-67.
  32.  
  33. Piché M, Chabot N, Bronchti G, Miceli D, Lepore F, Guillemot JP. Auditory responses in the visual cortex of neonatally enucleated rats. Neurosci. 2007 Mar; 145(3):1144-56.
  34.  
  35. Chabot N, Charbonneau V, Laramée M, Tremblay R, Boire D, Bronchti G. Subcortical auditory input to the primary visual cortex in anophthalmic mice. Neurosci Lett. 2008 Mar; 433(2):129-34.
  36.  
  37. Bronchti G, Rado R, Terkel J, Wollberg Z. Retinal projections in the blind mole rat: aWGA-HRP tracing study of a natural degeneration. Brain Res Dev Brain Res. 1991 Feb; 58(2):159-70.
  38.  
  39. Crabtree JW, Isaac JT. New intrathalamic pathways allowing modality-related and cross-modality switching in the dorsal thalamus. J. Neurosci. 2002 Oct; 22(19):8754-61.
  40.  
  41. Jones EG. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 2001 Oct;24(10):595-601.
  42.  
  43. Cate AD, Herron TJ, Yund EW, Stecker GCh, Rinne T, Kang X, et al. Auditory attention activates peripheral visual cortex. PLoS One [Internet]. 2009 Feb [cited 2014 Dec 15];4(2):e46453:[about 12 pp.]. Available from: http:. www.ncbi.nlm.nih.gov/pmc/articles/PMC2644787/.
  44.  
  45. Feng W, Störmer VS, Martinez A, McDonald JJ, Hillyard SA. Sounds activate visual cortex and improve visual discrimination. J. Neurosci. 2014 Jul; 34(29):9817-24.
  46.  
  47. James TW, Stevenson RA, Kim S, VanDerKlok RM, James KH. Shape from sound: evidence for a shape operator in the lateral occipital cortex. Neuropsychologia. 2011 Jun; 49(7):1807-15.
  48.  
  49. Johnson JA, Zatorre RJ. Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates. Cereb. Cortex. 2005 Oct;15(10):1609-20.
  50.  
  51. Laurienti PJ, Burdette JH, Wallace MT, Yen YF, Field AS, Stein BE. Deactivation of sensory- specific cortex by cross-modal stimuli. J Cogn Neurosci. 2002 Apr; 14(3):420-29.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.