Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2015; 61(3): 28-34


ТНЕ RОLE OF HYDROGEN SULFIDE IN REGULATION OF CIRCULATION BLOOD LIVER

P.I. Yanchuk, L.A. Slobodianyk

    Taras Shevchenko National University of Kyiv
DOI: https://doi.org/10.15407/fz61.03.028

Abstract

It was shown in acute experiments on laboratory rats that intraportalinjectionof hydrogen sulfide’s precursor L-cysteine (15 mg/kg)caused dilatation of the intrahepatic vessels. As a result, systemic blood pressure (SBP) and blood pressure in the portal vein (PVP) significantly decreased on 17,6 and 24,5%, respectively, and the rate of local blood flow in the liver (LF) and its blood filling (BF) increased on 28,2 and 24,4% respectively. Application of hydrogen sulfide donor NaHS (7 mg/kg) resulted in similarly directed changes: SBP and PVP decreased on 20,8% і 26,2% respectively,LF and BF increased on 16,4% and 30,9% respectively. Application of L-cysteine in the conditions of tsystationin-gamma-lyase blockade by LDproparhilhlitsyn led to an increase in SBP on 20,4 % and PVP on 26,6% and a decrease of BF on 21,5% and LF in the liver on 11,7% comparing with baseline values of these parameters. So, blockade of tsystationin-gamma-lyase not only completely removed the effects of L-cysteine, but also inhibited synthesis of H2S from its endogenous predecessors,which led to vasoconstriction of liver’s blood vessels and, consequently, to an increase of blood pressure and a decrease of liver blood flow rat’s and volume of blood deposited in liver

Keywords: hydrogen sulfide; L-cysteine; NaHS; liver; blood filling; portal pressure.

References

  1. Wang R. Hydrogen sulfide: the thirdgasotransmitter in biology and medicine. antioxidants Redox Signal.2010; 12(9):1061-7. CrossRef PubMed
  2.  
  3. Moataz M. Hydrogen sulfide as a gasotransmitter. J Neurochem. 2010; 113:14-26. CrossRef PubMed PubMedCentral
  4.  
  5. Carsten AW. Hydrogen sulfide: a new gaseous signal molecule and blood pressure regulator. J Nephrol. 2009; 22:173-6.
  6.  
  7. Han Y, Qin J, Chang X, Yang Zetal. Modulating effect of hydrogen sulfide on gamma-aminobutyric acid B receptor in recurrent febrile seizures in rats. Neurosci Res. 2005; 53:216-9. CrossRef PubMed
  8.  
  9. Zhu YZ, Wang ZJ, Ho P et al. Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. J Appl Physiol. 2007; 102:261-8. CrossRef PubMed
  10.  
  11. Dawe GS, Han SP, Bian JS, Moore PK. Hydrogen sulphide in the hypothalamus causes an ATP-sensitive K+ channeldependent decrease in blood pressure in freely moving rats. Neuroscience. 2008; 152:169-77. CrossRef PubMed
  12.  
  13. Semenykhina OM, Bazilyuk OV, Korkach YP, Sagach VF. Mechanisms of hydrogen sulfide effects on contractile activity of vasculars mooth muscle in rats. FiziolZh. 2011; 57(4):3-12 [Ukrainian].
  14.  
  15. Goshovska YV, Shimanskaya TV, Semenykhina OM, Sagach VF. The effects of donor hydrogen sulfide in cardioprotection. FiziolZh. 2012; 6:3-15 [Ukrainian].
  16.  
  17. Xiao Yu Tiana, Wing Tak Wonga et al. NaHS relaxes rat cerebral artery in vitro via inhibition of l-type voltagesensitive Ca2+channel. Pharmacol Research. 2012; 65:239-46. CrossRef PubMed
  18.  
  19. Sun Yan, Tang Chao-shu, Du Jun-bao and JIN Hong-fang Hydrogen sulfide and vascular relaxation. Chin Med J. 2011; 124(22):3816-9.
  20.  
  21. Adrienne L, King AL, Lefer DJ. Cytoprotective actions of hydrogen sulfide in ischaemia–reperfusion injury. Exp Physiol. 2011; 96(9):840-6. CrossRef PubMed
  22.  
  23. Renga B. Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-beta- synthase (CBS) and cystathionine-gamma-lyase (CSE). Inflamm Allergy Drug Targets.2011; 10:85-91. CrossRef PubMed
  24.  
  25. Robert K, Nehme J, Bourdon E. et al. Cystathionine beta synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology. 2005; 128:1405-15. CrossRef PubMed
  26.  
  27. Fiorucci S, Distrutti E, Cirino G, Wallace JL. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology. 2006; 131:259-71. CrossRef PubMed
  28.  
  29. Fiorucci S, Antonelli E, Distrutti E. et al. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by non-steroidal anti-inflammatory drugs. Gastroenterology. 2005; 129:1210-24. CrossRef PubMed
  30.  
  31. Fujii K, Sakuragawa T, Kashiba M. et al. Hydrogen sulfide as an endogenous modulator of biliary bicarbonate excretion in the rat liver. Antioxid. Redox Signal.2005; 7:788-794. CrossRef PubMed
  32.  
  33. Sarathi Mania, Wei C. et al. Hydrogen sulfide and the liver. Nitric Oxide. 2014; 10:1006-16.
  34.  
  35. Tsybenko VA, Yanchuk PI, Simonenko PN. Application of acute experiments the impedance plethysmography to study liver depositing function. Fiziol Zh. 1984; 30 (6):756-8 [Russian].
  36.  
  37. Reilly FD, Dimlich RV, Cilento EV, McCuskey RS. Hepatic Microvascular regulatory mechanisms. II. Cholinergic mechanisms. Hepatology. 1982; 2(2):230–5. CrossRef PubMed
  38.  
  39. Yanchuk PI, Pasichnichenko OM, Komarenko VI, Prіkhodko TP, Tsybenko VO. Elucidating mechanisms of acetylcholine constrictor action on the portal vessels. FiziolZh. 2006; 52(5):28-33.
  40.  
  41. Yanchuk R, Prikhodko T, Pasichnichenko O, Terekhov a, Tsybenko V. Mechanisms of Contractile Action of Acetylcholine on Hepatic Vein. Fiziol Zh. 2011; 57(1):21-26. CrossRef  
  42. Melnyk AB, Voloschuk NO, NOPentyuk, Zaichko KO The role of hydrogen sulphide and aminoacids sulfurcontaining in regulation tone of vascular smooth muscle wall the rats. Neurophysiology. 2010; 42(2):126-31 [Ukrainian].
  43.  
  44. JangG, WuL, LiangW, WangR. Direct stimulation of K(ATP) channels byexogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol. 2005; 68:1757-64.
  45.  
  46. Wai San Cheanga, Wing Tak Wonga, Bing Shenetal. 4-Aminopyridine-sensitive K+channels contributes to NaHS-induced membrane hyperpolarization and relaxation in the rat coronary artery. Vascular Pharmacology. 2010; 53:94-98. CrossRef PubMed
  47.  
  48. Resnick NL. The third gas. Chemistry and life.2009; 10:40-46[Russian].
  49.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.