Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2015; 61(3): 11-18


ENDOTHELIAL MONOCYTEACTIVATING FACTOR II CANCELS OXIDATIVE STRESS, СONSTITUTIVE NOS UNCOUPLING AND INDUCED VIOLATIONS OF CARDIAC HEMODYNAMICS IN HYPERTENSION (PART II)

N.А.Dorofeyeva, A.V.Kotsuruba, L.A.Mogilnitskaya, A.E.Malyna, A.I.Kornelyuk, V.F.Sagach

    О.О. Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz61.03.011


Abstract

The purpose of this study was to investigate the effect of EMAP II on free radical state of the heart and blood vessels, to restore сNOS coupling and cardiac hemodynamics in spontaneously hypertensive rats. It was found that, due to the combined inhibition of oxidative and nitrosative stress, EMAP II quickly restores impaired in hypertension constitutive de novo synthe- sis of NO by restoring сNOS coupling. Restoration by EMAP II of constitutive de novo synthesis NO abolished cardiac and endothelial dysfunction in spontaneously hypertensive rats. In hypertension, the introduction of EMAP II helped to improve the performance of the pumping function of the heart (stroke volume increased by 18.2 %, cardiac output – 22 %), an arterial stiffness decreased by 23.2 %, process of relaxation of the left ventricle improved, due to decreased in 4,7 times myocardial end-diastolic stiffness.

Keywords: hypertension; oxidative and nitrosative stress; сNOS uncoupling; heart; aorta; EMAP II.

References

  1. Hill BG, Bhatnagar A. Protein S-glutathiolation: redoxsensitive regulation of protein function. J Mol Cell Cardiol. 2012;52(3):559-67. CrossRef PubMed PubMedCentral
  2.  
  3. Chen C-A, Wang T-Y, Varadharaj S, Reyes L.R, Hemann C, et all. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature. 2010; 468(7327): 1115–4. CrossRef PubMed PubMedCentral
  4.  
  5. Zweier JL, Chen CA, Druhan LJ. S-glutathionylation reshapes our understanding of endothelial nitric oxide synthase uncoupling and nitric oxide/reactive oxygen species-mediated signaling. Antioxid Redox Signal. 2011;14:1769–75. CrossRef PubMed PubMedCentral
  6.  
  7. Kossmann S, Hu H, Steven S, Schönfelder T, Fraccarollo D, Mikhed Y, et al. Inflammatory Monocytes Determine Endothelial Nitric-oxide Synthase Uncoupling and Nitrooxidative Stress Induced by Angiotensin II. J Biol Chem. 2014;289(40):27540–50. CrossRef PubMed PubMedCentral
  8.  
  9. Kao J, Ryan J, Brett G, Chen J, Shen H, Fan Y, et al. Endothelial monocyte activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem. 1992;267(28):20239–47.
  10.  
  11. Berger AC, Alexander HR, Tang G, Wu PS, Hewitt SM, Turner E, et al. Endothelial monocyte activating polypeptide II induces endothelial cell apoptosis and may inhibit tumor angiogenesis. Microvasc Res. 2000;60(1):70–80. CrossRef PubMed
  12.  
  13. Li Z, Liu Y, Xue Y, Liu L, Xie H. Mechanisms for endothelial monocyte-activating polypeptide-II-induced opening of the blood–tumor barrier. J Mol Neurosci. 2012;47(2):408–17. CrossRef PubMed
  14.  
  15. Reznikov O, Chaĭkovs' ka L, Poliakova L, Sachyns' ka O. Effects of cytokine-like polypeptide EMAP II and flutamide on the testosterone-stimulated prostate of castrated rats. Fiziol. Z. 1994. 2011;57(4):1-12 [Ukrainian].
  16.  
  17. Yuan C, Yan L, Solanki P, Vatner SF, Vatner DE, Schwarz MA. Blockade of EMAP II protects cardiac function after chronic myocardial infarction by inducing angiogenesis. J Mol Cell Cardiol. 2015;79:224–31. CrossRef PubMed PubMedCentral
  18.  
  19. Tsai BM, Wang M, Clauss M, Sun P, Meldrum DR. Endothelial monocyte-activating polypeptide II causes NOS-dependent pulmonary artery vasodilation: a novel effect for a proinflammatory cytokine. Am J Physiol-Regul Integr Comp Physiol. 2004;287(4):R767–71.
  20.  
  21. Crabtree MJ, Brixey R, Batchelor H, Hale AB, Channon KM. Integrated redox sensor and effector functions for tetrahydrobiopterin- and glutathionylationdependent endothelial nitric-oxide synthase uncoupling. J Biol Chem. 2013;288(1):561–9. CrossRef PubMed PubMedCentral
  22.  
  23. Galougahi KK, Liu C-C, Gentile C, Kok C, Nunez A, et all. Glutathionylation Mediates Angiotensin II–Induced eNOS Uncoupling, Amplifying NADPH Oxidase-Dependent Endothelial Dysfunction. J Am Heart Assoc. 2014;3(1):1-11. CrossRef  
  24. Hill BG, Bhatnagar A. Protein S-glutathiolation: redoxsensitive regulation of protein function. J Mol Cell Cardiol. 2012;52(3):559-67. CrossRef PubMed PubMedCentral
  25.  
  26. Millar TM, Stevens CR, Benjamin N, Eisenthal R, Harrison R, Blake DR. Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Lett. 1998;427(2):225-8. CrossRef  
  27. Sanchez G, Pedrozo Z, Domenech RJ, Hidalgo C, Donoso P. Tachycardia increases NADPH oxidase activity and RyR2 S-glutathionylation in ventricular muscle. J Mol Cell Cardiol. 2005;39(6):982–91. CrossRef PubMed
  28.  
  29. Liu CC, Karimi Galougahi K, Weisbrod RM, Hansen T, Ravaie R, et all. Oxidative inhibition of the vascular Na+–K+ pump via NADPH oxidase-dependent b1 subuit glutathionylation: implications for angiotensin II-induced vascular dysfunction. Free Radic Biol Med. 2013;65(3):563–72. CrossRef PubMed PubMedCentral
  30.  
  31. Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, et all. S-glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med. 2004;10(11):1200–7. CrossRef PubMed
  32.  
  33. Weidert ER, Schoenborn SO, Cantu-Medellin N, Choughule KV, Jones JP, Kelley EE. Inhibition of xanthine oxidase by the aldehyde oxidase inhibitor raloxifene: implications for identifying molybdopterin nitrite reductases. Nitric Oxide. 2014;37:41-5. CrossRef PubMed PubMedCentral
  34.  
  35. Kim-Shapiro DB, Gladwin MT. Mechanisms of nitrite bioactivation. Nitric Oxide. 2014;38:58-68. CrossRef PubMed PubMedCentral
  36.  
  37. Rassaf T, Ferdinandy P, Schulz R. Nitrite in organ protection. Br J Pharmacol. 2014 ;171(1):1-11. CrossRef PubMed PubMedCentral
  38.  
  39. Omar SA, Webb AJ. Nitrite reduction and cardiovascular protection. J Mol Cell Cardiol. 2014;73:57-69. CrossRef PubMed
  40.  
  41. Cortese-Krott MM, Fernandez BO, Kelm M, Butler AR, Feelisch M. On the chemical biology of the nitrite/sulfide interaction. Nitric Oxide. 2015;46:14-24. CrossRef PubMed
  42.  
  43. Li H, Forstermann U. Pharmacological prevention of eNOS uncoupling. Curr Pharm Des. 2014;20(22):3595-606. CrossRef PubMed
  44.  
  45. Schulz E1, Jansen T, Wenzel P, Daiber A, Münzel T. Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid Redox Signal. 2008;10(6):1115-26. CrossRef PubMed
  46.  
  47. Beltowski J. Hydrogen sulfide in pharmacology and medicine - An apdate. Pharmacol. Rep. 2015;67(3):647-58.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.