THE ENERGY FUNCTION OF RAT CARDIAC MITOCHONDRIA UNDER ARTIFICIAL HYPOBIOSIS
S.D. Melnytchuk1, S.V. Khyzhnyak1, V.S. Morozova1, L.I. Stepanova2, A.A. Umanskaya1, V.M. Voitsitsky1
- National University of Life and Environmental Sciences of
Ukraine
- Taras Shevchenko Kyiv National University
DOI: https://doi.org/10.15407/fz61.02.015
Abstract
We investigated the energy activity of mitochondria from rat
cardiomyocytes under the artificial carbon dioxide hypobiosis,
which led to physiological changes in the organism (the
decrease of body temperature, the reduction of heart rate, etc.).
The respiratory and phosphorylation activities in mitochondria
of cardiomyocytes is reduced when using two oxidation
substrates (succinate and malate), which characterize the rate
of the oxygen consumption by the mitochondria. The partial
uncoupling of the oxidation and phosphorylation processes
when using the malate unlike succinate was established. The
activity of NADH-KoQ-oxidoreductase (complex I of the
respiratory chain) is inhibited, but the activities of succinate
dehydrogenase and cytochrome oxidase don’t change.
Probably, the priority of the succinate use under the artificial
hypobiosis provides the support of the mitochondria functional
activity on a sufficient energy level. It is evidenced by the
ATP-synthetase activity. The modifications of the structural
and functional state of the inner mitochondria membrane of
the cardiomyocytes are directed to the adaptation under the
artificial carbon dioxide hypobiosis
Keywords:
artificial hypobiosis, cardiomyocytes, mitochondria, respiratory chain, inner mitochondrial membrane, conformational modification.
References
- Melnytchuk SD, Vyhovanec VI. The influence of the artificial hypobiosis on the energy metabolism in the rats. Ukr Biokhim Zh. 2005;77(3):131–35. [Ukrainian].
- Melnytchuk SD, Melnytchuk DO. The animal hypobiosis state (molecular mechanisms and practical implications for the agriculture and medicine). Kyiv: NULES press; 2007. [Ukrainian].
- Withers PC, Cooper CE. Metabolic depression: a historical perspective. Prog Mol Subcell Biol. 2010;(49):1–23.
- Timofeev NN. Hypobiosis and cryobiosis. Past, present and future. Moscow: Inform-Znanie; 2005. [Russian].
- Zhenyin T, Zhaoyang Z, Cheng CL. 5′-Adenosine monophosphate induced hypothermia reduces early stage myocardial ischemia/reperfusion injury in a mouse model. Am J Transl Res. 2011;3(4):351–61.
- Staples JF, Brown JC. Mitochondrial metabolism in hibernation and daily torpor: a review. J Comp Physiol B. 2008; 178(7):811–27.
CrossRef
PubMed
- Melnytchuk SD, Morozova VS, Khyzhnyak SV, Voitsitsky VM. The oxidative phosphorylation parameters of the cardiomyocyte mitochondria of the rats under the artificial hypobiosis. Dopovidi NAN of Ukraine 2013;(4):148–53. [Ukrainian].
- Litasova EE, Lomivorotov VN, Karaskov AM, Ginko AV. Combined hypothermia during the open heart surgery: guidelines. Novosibirsk; 2000. [Russian].
- Melnytchuk SD. The main indicators of the blood acid-base status and metabolism in the rats under the amputation in the conditions of the hypobiosis and general anesthesia. Ukr Biokhim Zh 2001;73(6):104–107.[ Ukrainian].
- Severin SE, Solov'eva GA. Workshop on Biochemistry. Moscow: MSU press; 1989. [Rusian].
- Greenberg CS, Craddock PR. Rapid single-step membrane protein assay. Clin Chem. 1982;28(7):1725–26.
- Frank GM, editor. Study guide of biological oxidation by polarographic method. Moscow: Nauka;1973. [Russian].
- Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A. An electron-transport system associated with outer membrane of liver mitochondria. The Journal of Cell Biology. 1967;(32):415–38.
- Tyler DD, Natanailides C. Assay of maximal cytochrome c oxidase activity in fish muscule. Basic and Applied Myology. 1995;5(Pt I):99–102.
- Prohorova MI, editor. The methods of the biochemical research. Leningrad: Leningrad university press; 1982. [Russian].
- Krause F, Reifschneider NH, Goto S. Active oligomeric ATP synthases in mammalian mitochondria. Biochem Biophys Res Commun. 2005;(329):583–90.
- Dobrecov GE. Fluorescent Probes in the study of cell membranes and lipoproteins. Moscow: Nauka; 1989. [Russian].
- Portnychenko VY, Portnychenko AG, Sydorenko AM. Glycemia as a determinant factor of the restructuring ways of the metabolism and respiratory system under the hypoxia. Pathologia. 2011;8(2):52–5.[ Ukrainian].
- Jemirbekov JeZ, Lvova SP. Mechanisms of the biochemical changes at low body temperatures. Rostov-on-Don: Rostov university press; 1985. [Russian].
- Ignat'ev DA, Suhova GS, Ljashkov AE. Temperature and cardiotropic effects of the kyotorphin and neokyotorphin peptides in the experiments on hibernating and non hibernating animals. Uspekhi fiziologicheskikh nauk 2009;40(3):68–88. [Russian].
- Melnytchuk SD, Khyzhnyak SV, Morozova VS, Bouko VV, Babych LV, Voitsitsky VM. The biochemical serum parameters of the rats under the artificial hypobiosis. Bioresursy i pryrodokorystuvannja 2013;5(3–4):5–11. [Ukrainian].
- Lukjanova LD. Modern problems of the adaptation to hypoxia. Signaling mechanisms and their role in the system regulation. Patol fiziologija i jeksperim terapija 2011;(1):3–19. [Russian].
- Ashmarin IP, Sosulina LJu, Suhova GS, Kuzmin VS. The ADP-ribose and cADP-ribose like endogenous regulators of the cellular ion balance. The cardiotropic effect of the ADP-ribose. Uspekhi fiziologicheskikh nauk 2006;(1):3–17. [Russian].
- Skulachev VP, Bogachev AV, Kasparinskij FO. Membrane energy. Moscow: Moscow university press; 2010. [Russian].
- Gennis R. Biomembranes: molecular structure and function. Moscow: Mir; 1997. [Russian].
- Laktovich Dzh. Basic principles of the fluorescence spectroscopy. Moscow: Mir; 1986. [Russian].
- Tyson PA, Steinberg M. Accembly of tryptophan residues in Na+, K+-ATPase. J Biol Chem. 1987; 262(10):4644–48.
|