Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2015; 61(5): 3-10


RAIN FOCAL ISCHEMIA-REPERFUSION CAUSES A DECREASED RESISTANCE OF ЕRYTHROCYTES FROM VENOUS BLOOD TO ACID HEMOLYSIS, WHICH IS PREVENTED BY ECDYSTERONE

A.V. Kotsuruba, RR Sharipov, B.S.Kopyak, V.F. Sagach

    O.O.Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz61.05.003


Abstract

We investigated the resistance of erythrocytes from rat brain venous blood to acid hemolysis in the dynamics of brain ischemic period (15, 30, 45 and 60 min), as well as in the early (5 min) and distant (24h) period of brain reperfusion. Brain ischemia-reperfusion was made in rats that received ecdysterone (standartized extract of Serratula coronata) within 18 days (per os, 1 mg/kg). Analysis of the kinetic curves of acid hemolysis showed a pronounced (60 times, from 1.45 to 85.85 % at 60 min of brain ischemia and at 5 min of brain reperfusion, respectively) increase of unstable erythrocytes that hemolyzed easily (<2.5 min). In the preconditioned rats, this increase was only 8- fold. During the period of brain ischemia, with a maximum at 15th minute, in the venous blood from brain the diene conjugates (DK) pools increased from 2.40 to 9.48 ng/mg protein and LTC4 pools increased from 1.49 to 5.98 pmol/mg protein. Even more pools of DC and LTC4 were increased at 5th min of brain reperfusion. In animals received ecdysterone, during ischemia and early reperfusion period, both pools of DC and LTC4 in venous blood were lower than that in the controls. The latter implies a possible antiradical mechanism of the protective effect of ecdysterone.

Keywords: lerythrocytes; brain focal ischemia-reperfusion; venous blood from brain; acid hemolysis; rats; ecdysterone

References

  1. Sharipov RR, Kotsiuruba AV, Kop»iak 'BS, Sahach VF. Induction of oxidative stress in heart mitochondria in brain focal ischemia-reperfusion and protective effect of ecdysterone. Fiziol Zh. 2014; 60(3):11-7. [Ukrainian].
  2.  
  3. Sharipov RR, Kotsiuruba AV, Kop»iak BS, Sahach VF. Induction of nitrosative stress in mitochondria of rats hearts in experimental ischemia-reperfusion of the brain and its correction by ecdysterone. Fiziol Zh. 2014; 60(5):3- 13. [Ukrainian].
  4.  
  5. Korkach JuP,.Rudyk OV,.Kotsuruba AV,.Prysyazhna OD,. Sagach VF. The nitric oxide and superoxide syntesis in protective action of ecdysteronein mitochondrias of rat's hearts with streptozotocin-induced diabetes. Fiziol Zh. 2007; 53(5):22–8. [Ukrainian].
  6.  
  7. Sagach VF, Korkach YuP,.Kotsuruba AV,.Prysyazhna OD. The inhibition of oxidative and nitrosative stresses by ecdysterone as the mechanisms of its cardio- and vasoprotective action at type I diabetes. Fiziol Zh. 2008; 54(5):46–54. [Ukrainian].
  8.  
  9. Sagach VF, Korkach YuP, Kotsuruba AV, Rudyk OV, Vavilova GL. Mitochondrial permeability transition pore opening inhibition by ecdysterone in heart mitochondria of aging rats. Fiziol. Zh. 2008; 54(4):3–10. [Ukrainian].
  10.  
  11. Terskov IA, Gittelzon II. Method chimicheskich (kislotnich) erythrogram. Biophysika. 1957; 2(2):259-66. [Russian].
  12.  
  13. Kotsuruba AV, Kop»iak BS, Sahach VF, Spivak NJa. Old rats erythrocytes stability to acid hemolysis restoring by cerium oxide nanoparticles.. Physiol. Zh. 2014; 60(6): 3-9. [Ukrainian].
  14.  
  15. Lowery OH, Rosebroughh NI, Farr AL, Randall RI. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1): 265-75.
  16.  
  17. Wright LC, Chen S, Roufogalis BD. Regulation of the activity and phosphorylation of the plasma membrane Ca(2+)- ATPase by adriamycin in intact human erythrocytes. Arch Biochem Biophys. 1995; 321(2):459-66. CrossRef PubMed
  18.  
  19. de Jong K, Rettig MP, Low PS, Kuypers FA. Protein kinase C activation induces phosphatidylserine exposure on red blood cells. Biochemistry. 2002; 41(41):12562-7. CrossRef PubMed
  20.  
  21. Milanick MA. Proton fluxes associated with the Ca pump in human red blood cells. Am J Physiol. 1990; 258(3 Pt 1):C552-62.
  22.  
  23. Gassner B, Luterbacher S, Schatzmann HJ, Wüthrich A. Dependence of the red blood cell calcium pump on the membrane potential. Cell Calcium. 1988; 9(2):95-103. CrossRef  
  24. Xu W, Wilson BJ, Huang L, Parkinson EL, Hill BJ, Milanick MA. Probing the extracellular release site of the plasma membrane calcium pump. Am J Physiol Cell Physiol. 2000; 278(5):C965-72.
  25.  
  26. Hebbel RP, Shalev O, Foker W, Rank BH. Inhibition of erythrocyte Ca2+-ATPase by activated oxygen through thiol- and lipid-dependent mechanisms. Biochim Biophys Acta. 1986; 862(1):8-16. CrossRef  
  27. Bisognano JD, Dix JA, Pratap PR, Novak TS, Freedman JC. Proton (or hydroxide) fluxes and the biphasic osmotic response of human red blood cells. J Gen Physiol. 1993; 102(1): 99-123. CrossRef PubMed
  28.  
  29. Gladwin MT, Kim-Shapiro DB. The functional nitrite reductase activity of the heme-globins. Blood. 2008; 112(7):2636-47. CrossRef PubMed PubMedCentral
  30.  
  31. Crawford JH, Isbell TS, Huang Z, Shiva S, Chacko BK, et all. Hypoxia, red blood cells, and nitrite regulate NOdependent hypoxic vasodilation. Blood. 2006; 107(2):566- 74. CrossRef PubMed PubMedCentral
  32.  
  33. Foller M, Mahmud H, Gu S, Wang K, Floride E, Kucherenko Y, Luik S, Laufer S, Lang F. Participation of leukotriene C(4) in the regulation of suicidal erythrocyte death. J Physiol Pharmacol. 2009; 60(3):135-43.
  34.  
  35. van Asbeck BS, Hoidal J, Vercellotti GM, Schwartz BA, Moldow CF, Jacob HS. Protection against lethal hyperoxia by tracheal insufflation of erythrocytes: role of red cell glutathione. Science. 1985; 227(4688):756-9. CrossRef PubMed
  36.  
  37. Wiley JS, McCulloch KE. Calcium ions, drug action and the red cell membrane. Pharmacol Ther. 1982; 18(2):271- 92. CrossRef  
  38. Daugirdas JT, Arrieta J, Ye M, G Flores G, Battle DC. Intracellular acidification associated with changes in free cytosolic calcium. Evidence for Ca2+/H+ exchange via a plasma membrane Ca(2+)-ATPase in vascular smooth muscle cells. J Clin Invest. 1995; 95(4):1480–9. CrossRef PubMed PubMedCentral
  39.  
  40. Jennings ML.Transport of H2S and HS(-) across the human red blood cell membrane: rapid H2S diffusion and AE1- mediated Cl(-)/HS(-) exchange. Am J Physiol Cell Physiol. 2013; 305(9):C941-50.
  41.  
  42. Wu l, Wang R. Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications. Pharmacol. Rev. 2005; 57(4):585-630.
  43.  
  44. Leffler CW, Parfenova H, Jaggar JH, Wang R. Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. J Appl Physiol. 2006; 100(3):1065-76. CrossRef PubMed PubMedCentral
  45.  
  46. Sedlak W, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. PNAS.2009; 106(13): 5171-6. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.