RAIN FOCAL ISCHEMIA-REPERFUSION CAUSES A DECREASED RESISTANCE OF ЕRYTHROCYTES FROM VENOUS BLOOD TO ACID HEMOLYSIS, WHICH IS PREVENTED BY ECDYSTERONE
A.V. Kotsuruba, RR Sharipov, B.S.Kopyak, V.F. Sagach
O.O.Bogomoletz Institute of Physiology of the National
Academy of Sciences of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz61.05.003
Abstract
We investigated the resistance of erythrocytes from rat brain
venous blood to acid hemolysis in the dynamics of brain
ischemic period (15, 30, 45 and 60 min), as well as in the
early (5 min) and distant (24h) period of brain reperfusion.
Brain ischemia-reperfusion was made in rats that received
ecdysterone (standartized extract of Serratula coronata) within
18 days (per os, 1 mg/kg). Analysis of the kinetic curves of
acid hemolysis showed a pronounced (60 times, from 1.45
to 85.85 % at 60 min of brain ischemia and at 5 min of brain
reperfusion, respectively) increase of unstable erythrocytes that
hemolyzed easily (<2.5 min). In the preconditioned rats, this
increase was only 8- fold. During the period of brain ischemia,
with a maximum at 15th minute, in the venous blood from
brain the diene conjugates (DK) pools increased from 2.40
to 9.48 ng/mg protein and LTC4 pools increased from 1.49 to
5.98 pmol/mg protein. Even more pools of DC and LTC4 were
increased at 5th min of brain reperfusion. In animals received
ecdysterone, during ischemia and early reperfusion period,
both pools of DC and LTC4 in venous blood were lower than
that in the controls. The latter implies a possible antiradical
mechanism of the protective effect of ecdysterone.
Keywords:
lerythrocytes; brain focal ischemia-reperfusion; venous blood from brain; acid hemolysis; rats; ecdysterone
References
- Sharipov RR, Kotsiuruba AV, Kop»iak 'BS, Sahach VF. Induction of oxidative stress in heart mitochondria in brain focal ischemia-reperfusion and protective effect of ecdysterone. Fiziol Zh. 2014; 60(3):11-7. [Ukrainian].
- Sharipov RR, Kotsiuruba AV, Kop»iak BS, Sahach VF. Induction of nitrosative stress in mitochondria of rats hearts in experimental ischemia-reperfusion of the brain and its correction by ecdysterone. Fiziol Zh. 2014; 60(5):3- 13. [Ukrainian].
- Korkach JuP,.Rudyk OV,.Kotsuruba AV,.Prysyazhna OD,. Sagach VF. The nitric oxide and superoxide syntesis in protective action of ecdysteronein mitochondrias of rat's hearts with streptozotocin-induced diabetes. Fiziol Zh. 2007; 53(5):22–8. [Ukrainian].
- Sagach VF, Korkach YuP,.Kotsuruba AV,.Prysyazhna OD. The inhibition of oxidative and nitrosative stresses by ecdysterone as the mechanisms of its cardio- and vasoprotective action at type I diabetes. Fiziol Zh. 2008; 54(5):46–54. [Ukrainian].
- Sagach VF, Korkach YuP, Kotsuruba AV, Rudyk OV, Vavilova GL. Mitochondrial permeability transition pore opening inhibition by ecdysterone in heart mitochondria of aging rats. Fiziol. Zh. 2008; 54(4):3–10. [Ukrainian].
- Terskov IA, Gittelzon II. Method chimicheskich (kislotnich) erythrogram. Biophysika. 1957; 2(2):259-66. [Russian].
- Kotsuruba AV, Kop»iak BS, Sahach VF, Spivak NJa. Old rats erythrocytes stability to acid hemolysis restoring by cerium oxide nanoparticles.. Physiol. Zh. 2014; 60(6): 3-9. [Ukrainian].
- Lowery OH, Rosebroughh NI, Farr AL, Randall RI. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1): 265-75.
- Wright LC, Chen S, Roufogalis BD. Regulation of the activity and phosphorylation of the plasma membrane Ca(2+)- ATPase by adriamycin in intact human erythrocytes. Arch Biochem Biophys. 1995; 321(2):459-66.
CrossRef
PubMed
- de Jong K, Rettig MP, Low PS, Kuypers FA. Protein kinase C activation induces phosphatidylserine exposure on red blood cells. Biochemistry. 2002; 41(41):12562-7.
CrossRef
PubMed
- Milanick MA. Proton fluxes associated with the Ca pump in human red blood cells. Am J Physiol. 1990; 258(3 Pt 1):C552-62.
- Gassner B, Luterbacher S, Schatzmann HJ, Wüthrich A. Dependence of the red blood cell calcium pump on the membrane potential. Cell Calcium. 1988; 9(2):95-103.
CrossRef
- Xu W, Wilson BJ, Huang L, Parkinson EL, Hill BJ, Milanick MA. Probing the extracellular release site of the plasma membrane calcium pump. Am J Physiol Cell Physiol. 2000; 278(5):C965-72.
- Hebbel RP, Shalev O, Foker W, Rank BH. Inhibition of erythrocyte Ca2+-ATPase by activated oxygen through thiol- and lipid-dependent mechanisms. Biochim Biophys Acta. 1986; 862(1):8-16.
CrossRef
- Bisognano JD, Dix JA, Pratap PR, Novak TS, Freedman JC. Proton (or hydroxide) fluxes and the biphasic osmotic response of human red blood cells. J Gen Physiol. 1993; 102(1): 99-123.
CrossRef
PubMed
- Gladwin MT, Kim-Shapiro DB. The functional nitrite reductase activity of the heme-globins. Blood. 2008; 112(7):2636-47.
CrossRef
PubMed PubMedCentral
- Crawford JH, Isbell TS, Huang Z, Shiva S, Chacko BK, et all. Hypoxia, red blood cells, and nitrite regulate NOdependent hypoxic vasodilation. Blood. 2006; 107(2):566- 74.
CrossRef
PubMed PubMedCentral
- Foller M, Mahmud H, Gu S, Wang K, Floride E, Kucherenko Y, Luik S, Laufer S, Lang F. Participation of leukotriene C(4) in the regulation of suicidal erythrocyte death. J Physiol Pharmacol. 2009; 60(3):135-43.
- van Asbeck BS, Hoidal J, Vercellotti GM, Schwartz BA, Moldow CF, Jacob HS. Protection against lethal hyperoxia by tracheal insufflation of erythrocytes: role of red cell glutathione. Science. 1985; 227(4688):756-9.
CrossRef
PubMed
- Wiley JS, McCulloch KE. Calcium ions, drug action and the red cell membrane. Pharmacol Ther. 1982; 18(2):271- 92.
CrossRef
- Daugirdas JT, Arrieta J, Ye M, G Flores G, Battle DC. Intracellular acidification associated with changes in free cytosolic calcium. Evidence for Ca2+/H+ exchange via a plasma membrane Ca(2+)-ATPase in vascular smooth muscle cells. J Clin Invest. 1995; 95(4):1480–9.
CrossRef
PubMed PubMedCentral
- Jennings ML.Transport of H2S and HS(-) across the human red blood cell membrane: rapid H2S diffusion and AE1- mediated Cl(-)/HS(-) exchange. Am J Physiol Cell Physiol. 2013; 305(9):C941-50.
- Wu l, Wang R. Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications. Pharmacol. Rev. 2005; 57(4):585-630.
- Leffler CW, Parfenova H, Jaggar JH, Wang R. Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. J Appl Physiol. 2006; 100(3):1065-76.
CrossRef
PubMed PubMedCentral
- Sedlak W, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. PNAS.2009; 106(13): 5171-6.
CrossRef
PubMed PubMedCentral
|