Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2015; 61(1): 3-9


NANOCERIUM RESTORES THE ERYTHROCYTES STABILITY TO ACID HEMOLYSIS BY INHIBІTION OF OXYGEN AND NITROGEN REACTIVE SPECIES IN OLD RATS

A.V. Kotsuruba1, B.S. Kopjak1, V.F. Sagach1, N.Ja.Spivak2

  1. O.O. Bogomoletz Institute of physiology NAS of Ukraine, Kyiv
  2. Institute of microbiology and virusology NAS of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz61.01.003


Abstract

In experiments in vivo the effect of nanocerium (cerium oxide nanoparticles) on the stability of red blood cells to acid hemolysis, levels of both ROS and RNS generation and H2S pools in plasma and erythrocytes of old rats were investigated. In red blood cells of old rats the proton penetration into the matrix of erythrocytes showed a significant raising and the fate of labile «aging» erythrocytes in old animals compared with adult were upregulated. These phenomena paralleled with significant up-regulation of ROS and RNS generation. Introduction for 14 days per os to old rats 0.1 mg / kg of nanocerium fully restored resistance of erythrocytes to acid hemolysis by ROS and RNS in both plasma and erythrocytes reduction. Nanocerium decreased the erythrocytes and, conversely, significantly increased the plasma’s pools of H2S. Key words: erythrocytes, acid hemolysis, old rats, proton penetration, cerium oxide nanoparticles, reactive oxygen and nitrogen metabolites, H2S.

Keywords: erythrocytes, acid hemolysis, old rats, proton penetration, cerium oxide nanoparticles, reactive oxygen and nitrogen metabolites, H2S.

References

  1. Sagach VF, Baziljuk OV, Stepanenko LG, Korkach YuP,Kotsuruba AV. Enalapril action on nitric oxide synthesis,oxidative metabolism and vascular tone of aging rat.Fiziol Zh. 2007; 53(4):15–26 (Ukrainian).
  2.  
  3. Kleinbongard P, Schulz R, Rassaf T, Lauer T, Dejam A, JaxT, et al. Red blood cells express a functional endothelialnitric oxide synthase. Blood. 2006; 107(7): 2943 - 51. CrossRef PubMed
  4.  
  5. Huang Z, Shiva S, Daniel B, Kim-Shapiro DB, Rakesh P. etal. Enzymatic function of hemoglobin as a nitrite reductasethat produces NO under allosteric control. J Clin Invest.2005; 115(7): 2099-107. CrossRef PubMed PubMedCentral
  6.  
  7. Crawford JH, Isbell TS, Huang Z, Shiva S, Chacko BK,et al. Hypoxia, red blood cells, and nitrite regulate NOdependenthypoxic vasodilation. Blood. 2006; 107(2):566 - 74. CrossRef PubMed PubMedCentral
  8.  
  9. Barbararsh NA, Kuvshinov D, Chichlenko MV, KolesnikovAO. Nitric oxide and human aging. Adv Gerontol. 2011;24(2):256-9.
  10.  
  11. Fedorov SM, Baziljuk OV, Kotsuruba AV, Korkach YuP,Sagach VF. Magnetic-Laser influence on the system of nitricoxide and contractile activity of smooth muscles of rataorta under hypertension. Fiziol. Zh. 2012; 58(6):36–47(Ukrainian).
  12.  
  13. Chen S, Hou Y, Cheng G, Zhang C, Wang S, Zhang J.Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress. Biol Trace ElemRes. 2013; 154(1):156-66. CrossRef PubMed
  14.  
  15. Hirst SM, Karakoti A, Singh S, Self W, Tyler R, et al.Bio-distribution and in vivo antioxidant effects of ceriumoxide nanoparticles in mice. Environ Toxicol. 2013;28(2):107-18. CrossRef PubMed
  16.  
  17. Celardo I, De Nicola M, Mandoli C, Pedersen JZ, TraversaE, Ghibelli L. Ce³+ ions determine redox-dependent antiapoptoticeffect of cerium oxide nanoparticles. ACS Nano.2011; 5(6):4537-49. CrossRef PubMed
  18.  
  19. Hussain S, Garantziotis S. Interplay between apoptoticand autophagy pathways after exposure to cerium dioxidenanoparticles in human monocytes. Autophagy. 2013Jan;9(1):101-3.
  20.  
  21. Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S,Nardone G, et al. Cerium oxide nanoparticles protectcardiac progenitor cells from oxidative stress. ACS Nano.2012; 22(5):3767-75. CrossRef PubMed
  22.  
  23. Alili L, Sack M, von Montfort C, Giri S, Das S, et al.Downregulation of tumor growth and invasion by redoxactivenanoparticles. Antioxid Redox Signal. 2013 ;19(8):765-78. CrossRef PubMed PubMedCentral
  24.  
  25. Estevez AY, Pritchard S, Harper K, Aston JW, LynchA, et al. Neuroprotective mechanisms of cerium oxidenanoparticles in a mouse hippocampal brain slice modelof ischemia. Free Radic Biol Med. 2011; 51(6):1155-63. CrossRef PubMed
  26.  
  27. Ciofani G, Genchi GG, Mazzolai B, Mattoli V. Transcriptionalprofile of genes involved in oxidative stress andantioxidant defense in PC12 cells following treatmentwith cerium oxide nanoparticles. Biochim Biophys Acta.2014;1840(1): 495-506. CrossRef PubMed
  28.  
  29. Botta A, Martínez V, Mitjans M, Balboa E, Conde E,Vinardell MP. Erythrocytes and cell line-based assaysto evaluate the cytoprotective activity of antioxidantcomponents obtained from natural sources. Toxicol InVitro. 2014; 28(1):120-4. CrossRef PubMed
  30.  
  31. Martin-Ventura JL, Madrigal-Matute J, Martinez-Pinna R,Ramos-Mozo P, Blanco-Colio LM, et al. Erythrocytes,leukocytes and platelets as a source of oxidative stressin chronic vascular diseases: detoxifying mechanismsand potential therapeutic options. Thromb Haemost.2012;108(3): 435-42. CrossRef PubMed
  32.  
  33. Terskov IA, Gittelzon II. Method chimicheskich(kislotnich) erythrogram. Biophysika. 1957; 2(2): 259-66 (Russian).
  34.  
  35. Svenson A. a rapid and sensitive spectrophotometricmethod for determination of hydrogen sulfide with2,2'-dipyridyl disulfide. Anal Biochem. 1980; 107(1):51 – 5. CrossRef  
  36. Jsukahara H. Effect of NOS inhibitions on bonemethabolizm in growing rats. Am J Physiol.1996; 270(5):E840-5.
  37.  
  38. Kuthan H, Ullrich V, Estabrook RW. A quantitative testfor superoxide radicals produced in biological systems.Biochem J. 1982; 203(3): 551-8. CrossRef PubMed PubMedCentral
  39.  
  40. Huwiler M, Kohler N. Pseudo-catalytic degradation ofhydrogen peroxide in the lactoperoxidase/H2O2/iodidesystem. Eur J Biochem. 1984; 141(1): 69-74. CrossRef PubMed
  41.  
  42. Conte D, Narindrasorasa KS, Sarkar B. In vivo andin vitro iron replaced zinc finger generates free radicalsand causes DNA damage. Eur J Biochem.1996; 271(9):5125-30.
  43.  
  44. Gavrilov VB, Gavrilova AP, Chmara NF. Heptane andiso-propanol ecstracts for diene conjugates concentrationin blood plasma. Lab. delo.1988; (2): 60-4 (Russian).
  45.  
  46. Uchiyama M, Mihara M. Determination of malonaldehydeprecursor in tissues by thiobarbituric acid test. AnalBiochem. 1978; 86(1): 271-8.
  47.  
  48. Lowery OH, Rosebroughh NI, Farr AL, Randall RI. Proteinmeasurement with the Folin phenol reagent. J Biol Chem.1951; 193(1): 265-75.
  49.  
  50. Heckert G, Karakoti AS, Seal S. The role of ceriumredox state in the SOD mimetic activity of nanoceria.Biomaterials. 2008; 29( 9 ): 2705–9.
  51.  
  52. Pirmohamed T, Dowding JM, Singh S, Wasserman B,Heckert E, et al. Nanoceria exhibit redox state-dependentcatalase mimetic activity. Chem Commun. 2010; 46(8):2736–8. CrossRef PubMed PubMedCentral
  53.  
  54. Khan SA, Lee K, Minhas KM, Gonzalez DR, RajuSVY, et al. Neuronal nitric oxide synthase negativelyregulates xanthine oxidoreductase inhibition of cardiacexcitation-contraction coupling. Proc Natl Acad Sci USA.2004;101(45): 15944-8. CrossRef PubMed PubMedCentral
  55.  
  56. Förstermann U. Nitric oxide and oxidative stress invascular disease. Pflugers Arch. 2010;459(6):923-39. CrossRef PubMed
  57.  
  58. Ghaffari S. Oxidative stress in the regulation of normaland neoplastic hematopoiesis. Antioxid Redox Signal.2008 ;10(11):1923-40
  59.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.