Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2014; 60(6): 75-87


I.M. Mankovska, T.V. Serebrovska

    O.O.Bogomoletz Institute of Physiology NASU, Kyiv, Ukraine


Mitochondria (Mt) play a key role in the physiology and pathology of humans and animals. Signaling from Mt has divergent physiological and pathophysiological consequences. Critical lack of oxygen causes Mt dysfunction, while adaptation to intermittent hypoxia training (IHT) leads to positive changes in Mt. The focus of this review is to summarize the current knowledge about the mechanisms of IHT impact on Mt structure and functions in compare with the effects of acute hypoxia (AH). It was shown that AH causes mitochondrial swelling, vacuolization of organelles, disorganization and destruction of Mt membranes. When exposed to IHT, the increase in the total number of Mt, the reduction of the number of structurally modified organelles, the appearance of energetically active Mt with vesicular cristae, the microMt formation are observed. AH is associated with oxidative damage, calcium dyshomeostasis, defective ATP synthesis, or induction of the permeability transition pore. Under IHT, the low level of ROS production is protective and serves as a trigger for adaptive responses. IHT leads to reprogramming of Mt metabolism, providing adequate ATP production. Activation of potassium transport in the Mt matrix during IHT is a protective mechanism against Ca2+ overload caused by AH. Mt energy production in brainstem neurons is directly related to the regulation of neurotransmitters - glutamate and GABA which involved in the respiratory rhythmogenesis formation. All adaptive reactions to hypoxia are regulated by HIF-factors (HIF-1, HIF-2, HIF-3). Each of HIF-subunits plays a certain role depending on the mode of hypoxic stress. These peculiarities can be important when choosing a mode of IHT for the prevention and treatment of various diseases. New data about the HIF organ specificity provide potential pharmacological regulation of HIFs as a new therapeutic tool.

Keywords: mitochondrial dysfunction, intermittent hypoxia,morphology of mitochondria, free radical processes,glutamatergic system, HIF.


  1. Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 2013;14(3):6306-44. CrossRef PubMed PubMedCentral
  3. Smith RA, Hartley RC, Cocheme HM, Murphy MP. Mitochondrial pharmacology. Trends Pharmacol Sci. 2012;33(6):341-52. CrossRef PubMed
  5. Giorgi C, Agnoletto C, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Suski JM, Wieckowski MR, Pinton P. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion. 2012;12(1):77-85. CrossRef PubMed PubMedCentral
  7. Ylikallio E, Suomalainen A. Mechanisms of mitochondrial diseases. Ann Med. 2012;44(1):41-59. CrossRef PubMed
  9. Cooper A, Lalueza-Fox C, Anderson S, Rambaut A, Austin J, Ward R. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature. 2001;409(6821): 704-7. CrossRef PubMed
  11. Sheu SS, Dirksen RT, Pugh EN. The 65th Symposium of the Society for General Physiologists: Energizing research in mitochondrial physiology and medicine. J Gen Physiol. 2011; 138(6):563-67. CrossRef PubMed PubMedCentral
  13. Lukyanova LD, Kirova Yu I, and Germanova EL. Energotropic Effects of Intermittent Hypoxia: Role of Succinate-Dependent Signaling. In: Lei Xi & Tatiana V. Serebrovskaya (Eds). Intermittent Hypoxia and Human Diseases 2012; Springer, UK, Chapter 20: 239-52. CrossRef  
  14. Vladimirov JuA. Deregulation of mitochondrial membrane permeability, necrosis and apoptosis. Deregulation pathology: A guide for doctors and biologists (ed. GN Kryzhanovsky). M .: Medicine. 2002; 127-56.
  16. Cadenas E, Boveris A. Mitochondrial free radical production, antioxidant defenses and cell signaling. The Handbook of Environmental Chemistry. 2005;2(O):219–34.
  18. Sazontova TG, Anchishkina NA, Zhukova AG, Bedareva IV, Pylaeva EA, Kriventsova NA, Polianskaia AA, Iurasov AR, Arkhipenko IuV. [Reactive oxygen species and redox-signaling during adaptation to changes of oxygen level]. Fiziol Zh. 2008;54(2):18-32. Review. [Russian]. PubMed
  20. Mankovska IM, Gavenauskas BL, Nosar VI, Nazarenko AI, Rozova KV, Bratus LV. Mechanisms of muscle tissue adaptation to load hypoxia under intermittent hypoxia. Sports medicine. 2005; 1: 3-11. [Ukrainian].
  22. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing Cell Metab. 2005;1:401-08. CrossRef PubMed
  24. Yin F, Boveris A, Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal. 2014;20(2):353-71. CrossRef PubMed PubMedCentral
  26. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROSinduced ROS release: an update and review. Biochim Biophys Acta. 2006; 1757(5-6):509-17. CrossRef PubMed
  28. Chandel NS. Mitochondria as signaling organelles BMC Biol. 2014;12(1): 34-40. CrossRef PubMed PubMedCentral
  30. Nanduri J, Vang N, Yuan G, Khan SA, Souvannakitti D, Peng YJ, Kumar GK, Garcia JA, Prabhakar NR. Intermittent hypoxia degrades HIF-2 via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci USA. 2009;106:1199-1204. CrossRef PubMed PubMedCentral
  32. Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012;92: 967–1003. CrossRef PubMed PubMedCentral
  34. Xi L, Serebrovskaya TV (Eds). Intermittent Hypoxia: From Molecular Mechanisms to Clinical Applications. Nova Science Publishers NY. 2009; 602 pp.
  36. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399-408. CrossRef PubMed PubMedCentral
  38. Goda N, Kanai M. Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol. 2012;95:457-63. CrossRef PubMed
  40. Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, and Mallet RT. Intermittent Hypoxia: Cause of or Therapy for Systemic Hypertension? Exp Biol Med (Maywood). 2008;233(6):627-50. CrossRef PubMed
  42. Zhong N, Zhang Y, Zhu H.F, Zhou ZN. Intermittent hypoxia exposure prevents mtDNA deletion and mitochondrial structure damage produced by ischemia/reperfusion injury. Scheng Li Xue Bao. 2000;52(5):375-80. PubMed
  44. Rozova KV, Trepatskaya TV. Ultrastructural features of destruction and morphogenesis of mitochondria in body tissues during hypoxia of different genesis. In: Challenges, achievements and prospects of life sciences development and health care practice. Proceedings of SI Georgievski Crimean state medical university. 2006; 142 (III): 126-9.
  46. Rozova KV. Effect of normo- and hypobaric hypoxia on ultrastructure of the lung and myocardial tissue. Fiziol Zh. 2008;54(2):63-8. Ukrainian. PubMed
  48. Gonchar OA, Rozova EV. Effects of different modes of interval hypoxic training on morphological characteristics and antioxidant status of heart and lung tissues. Bull Exp Biol Med. 2007 Aug;144(2):249-52. Russian. CrossRef PubMed
  50. Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. Circ Res. 2009;104:150-8. CrossRef PubMed PubMedCentral
  52. Semenza GL. Life with oxygen. Science. 2007;318:62-4. CrossRef PubMed
  54. Skulachev VP. New data on biochemical mechanism of programmed senescence of organisms and antioxidant defense of mitochondria. Biochemistry, 2009;74(12): 1400-03. CrossRef  
  55. Gonchar O, Mankovska I. Moderate hypoxia/hyperoxia attenuates acute hypoxia-induced oxidative damage and improves antioxidant defense in lung mitochondria. Acta Physiol Hungarica. 2012; 99(4): 436-46. CrossRef PubMed
  57. Steshenko MM. Changes in prooxidant-antioxidant balance and functional state of rat myocardium mitochondria during acute hypoxia and means for they prevention. Ph.D. thesis. Kyiv. 2012; 24 pp.
  59. Arkhipenko YuV, Sazontova TG, Zhukova AG. Adaptation to periodic hypoxia and hyperoxia improves resistance of membrane structures in heart, liver, and brain. Bull Exp Biol Med. 2005;140 (3):278-81. CrossRef  
  60. Sazontova TG, Arkhipenko YuV. Intermittent hypoxia in resistance of cardiac membrane structures: role of reactive oxygen species and redox signaling. In: Intermittent Hypoxia: From Molecular Mechanisms to Clinical Applications (Eds: Lei Xi, Serebrovskaya Tatiana V). Nova Science Publishers NY. 2009; Chapter 5: 113-50.
  62. El'chaninova SA, Smagina IV, Koreniak NA, Varshavskii BIa. The influence of interval hypoxic training on lipid peroxidation and antioxidant enzyme activity. Fiziol Cheloveka. 2003 May-Jun;29(3):72-5. [Russian]. PubMed
  64. Kalachev AG, Elchaninova SA, Filippova AG. Using of long hypoxic training for secondary prevention of coronary heart disease. Bulletin arrhythmology. 2004; 35: 30-1. [Russian].
  66. Serebrovskaya TV, Nesvitailova KV, Bakunovsky AN, and Mankovska IN. Intermittent Hypoxia in Treatment of Bronchial Asthma in Childhood. In: Lei Xi, Serebrovskaya Tatiana V (Eds). Intermittent Hypoxia and Human Diseases / Springer, UK. 2012; Chapter 11: 235-46. CrossRef  
  67. Steshenko MM, Gonchar OO, Mankovska MI. Mitochondrial oxidative violations during hypoxia and its correction by means of interval hypoxic-hyperoxic training. Exper & Clin Physiol and Biochem. 2010; (1): 12-17. [Ukrainian].
  69. Mironova GD, Kachaeva EV, Kopylov AT. Mitochondrial ATP-dependent potassium channel. 1. The structure of the channel, the mechanisms of its functioning and regulation]. Vestn Ross Akad Med Nauk. 2007;(2):34-43. [Russian]. PubMed
  71. Akopova OV, Kolchinskaya LI, Nosar VI, Smirnov AN, Malysheva MK, Mankovska IN, Sagach VF. The effect of permeability transition pore opening on reactive oxygen species production in rat brain mitochondria. Ukr biohim zhurn. 2011;83(6): 46-55.
  73. Dzeja PP, Holmuchamedov EL, Ozcan C, Pucar D, Jahangir A, Terzic A. Mitochondria: gateway for cytoprotection. Circ Res. 2000; 89 (9): 744-46.
  75. Facundo HT, Fornazari M, Kowaltowski AJ. Tissue protection mediated by mitochondrial K+ channels. Biochim Biophys Acta. 2006; 1762: 202-12. CrossRef PubMed
  77. Czyz A, Szewczyk A, Nalecz MJ, Wojtczak L. (). The role of mitochondrial potassium fluxes in controlling the protonmotive force in energized mitochondria. Biochem Biophys Res Commun.1995;210(1):98-104. CrossRef PubMed
  79. Holmuchamedov EL, Wang L, Terzic A. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol. 1999;519(2): 347-62. CrossRef PubMedCentral
  81. Cancherini DV, Trabuco LG, Reboucas NA, Kowaltowski AJ. ATP-sensitive K+ channel in renal mitochondria. Am J Physiol. 2003;285: F1291-6. CrossRef  
  82. Fryer RM, Eells JT, Hsu AK, Henry MM, Gross GJ. Ishemic preconditioning in rats: role of mitochondrial KATP channel in preservation of mitochondrial function. Am J Physiol. 2000;278, H305-12.
  84. Kolesnikova EE, Nosar VI, Mankovskaya IN. The role of glutamate in the mechanisms of adaptation of rat control breathing system to intermittent hypoxia. Neurophysiology. 2009; 41 (2): 183-91. CrossRef  
  85. Opanasenko HB, Bratus' LV, Havenauskas BL, Honchar OO, Man'kovs'ka IM, Nosar VI, Frantsuzova SB. Disturbances of oxygen-dependent processes in periodontal tissues under prolonged immobilization stress and ways of their pharmacological correction]. Fiziol Zh. 2013;59(1):17-24. [Ukrainian]. PubMed
  87. Serebrovskaya TV, Nosar VI, Bratus LV, Gavenauskas BL, Mankovska IM. Tissue oxygenation and mitochondrial respiration under different modes of intermittent hypoxia. High Alt Med Biol. 2013;14(3):280-8. CrossRef PubMed
  89. Wang ZH, Cai XL, Wu L, Yu Z, Liu JL, Zhou ZN, Liu J, Yang HT. Mitochondrial energy metabolism plays a critical role in the cardioprotection afforded by intermittent hypobaric hypoxia. Exp Physiol. 2012;97(10): 1005-18. CrossRef PubMed
  91. Magalhaes J, Falcao-Pires I, Goncalves IO, Lumini-Oliveira J, Marques-Aleixo I, dos Passos E, Rocha-Rodrigues S, Machado NG, Moreira AC, Miranda-Silva D, Moura C, Leite-Moreira AF, Oliveira PJ, Torrella JR, Ascensao A. Synergistic impact of endurance training and intermittent hypobaric hypoxia on cardiac function and mitochondrial energetic and signaling. Int J Cardiol. 2013; 168:5363-71. CrossRef PubMed
  93. Magalhaes J, Goncalves IO, Lumini-Oliveira J, MarquesAleixo I, dos Passos E, Rocha-Rodrigues S, Machado NG, Moreira AC, Rizo D, Viscor G, Oliveira PJ, Torrella JR, Ascensao A. Modulation of cardiac mitochondrial permeability transition and apoptotic signaling by endurance training and intermittent hypobaric hypoxia. Int J Cardiol. 2014, 15;173(1):40-5.
  94. Akopova OV, Nosar VI, Bouryi VA, Mankovskaya IN, and Sagach VF. Influence of ATP-Dependent K+- Channel Opener on K+-Cycle and Oxygen Consumption in Rat Liver Mitochondria. Biochemistry (Moscow). 2010;75(9): 1139-47. CrossRef  
  95. Zielinski J. Effects of intermittent hypoxia on pulmonary haemodynamics: animal models versus studies in humans. Eur Respir J. 2005;25(1):173-80. CrossRef PubMed
  97. Mateika J.H., Sandhu K.S. Experimental protocols and preparations to study respiratory long term facilitation. Respir Physiol Neurobiol. 2011;176(1-2):1-11. CrossRef PubMed PubMedCentral
  99. Lopata VA, Serebrovskaya TV. Hypoxicators: Review of the Operating Principles and Constructions. In: Lei Xi & Tatiana V. Serebrovskaya (Eds). Intermittent Hypoxia and Human Diseases /Springer, UK. 2012; Chapter 24: 291-302. CrossRef  
  100. Fagan KA. Physiological and genomic consequences of intermittent hypoxia. Selected contribution: Pulmonary hypertension in mice following intermittent hypoxia. J Appl Physiol. 2001;90:2502–07. CrossRef PubMed
  102. Lin AM, Chen CF, Ho LT. Neuroprotective effect of intermittent hypoxia on iron-induced oxidative injury in rat brain. Exp Neurol. 2002;176(2):328-35. CrossRef PubMed
  104. Neckár J, Papousek F, Nováková O, Ost'ádal B, Kolár F. Cardioprotective effects of chronic hypoxia and ischaemic preconditioning are not additive. Basic Res Cardiol. 2002;97(2):161-67. CrossRef PubMed
  106. Zong P, Setty S, Sun W, Martinez R, Tune JD, Ehrenburg IV, Tkatchouk EN, Mallet RT, Downey HF. Intermittent hypoxic training protects canine myocardium from infarction. Exp Biol Med (Maywood). 2004;229(8):806-12. CrossRef  
  107. Vavilova HL, Serebrovs'ka TV, Rudyk OV, Bielikova MV, Koliesnikova IE, Kukoba TV, Sahach VF. Effect of the hypoxia training on the sensitivity of phenylarsineoxideinduced mitochondrial permeability transition pore opening in the rat heart. Fiziol Zh. 2005;51(4):3-12. PubMed
  109. Naryzhnaia NV, Neckar J, Maslov LN, Lishmanov IuB, Kolar F, Lasukova TV. The role of sarcolemmal and mitochondrial K(ATP)-channels in realization of the cardioprotection and antiarrhythmic effect of different regimens of hypobaric adaptation. Ross Fiziol Zh im IM Sechenova. 2009;95(8):837-49.
  111. Manukhina EB, Jasti D, Vanin AF, Downey HF. Intermittent hypoxia conditioning prevents endothelial dysfunction and improves nitric oxide storage in spontaneously hypertensive rats. Exp Biol Med (Maywood). 2011;236(7):867-73. CrossRef PubMed
  113. Rozova K, Gonchar O, Mankovska I. Benefits and Risks of Different Regimen of Intermittent Hypoxic Training. In: Lei Xi & Tatiana V. Serebrovskaya (Eds). Intermittent Hypoxia and Human Diseases. Springer, UK. 2012;Chapter 22:273-80. CrossRef  
  114. Bianchi L, Denavit-Saubie M, Champagnat J. Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol Rev. 1995;75: 1-45. CrossRef PubMed
  116. Madl J E, Royer S M. Glutamate dependence of GABA levels in neurons of hypoxic and hypoglycemic rat hippocampal slices. Neurosci. 2000; 96(4):657-64. CrossRef  
  117. Kolesnikova E É, Nosar' VI, Man'kovskaya I N, Serebrovskaya T V Role of Glutamate NMDA Receptors in the Control of Respiration in Mitochondrial Dysfunction in Brainstem Neurons. Neurophysiology. 2012; 44 (2): 98-105. CrossRef  
  118. Weidemann A, Johnson RS. Biology of HIF-1 alpha. Cell Death Differ. 2008; 15:621. CrossRef PubMed
  120. Kim JW, Tchernyshov I, Semenza GL, Dang CV. HIF- 1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177-85. CrossRef PubMed
  122. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283:10892-903. CrossRef PubMed PubMedCentral
  124. Fernandez-Markos PJ, Auwerx J. Regulation of PGC-1a, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011;93(4): S 884-90.
  126. Montaigne D, Hurt C, Neviere R. Mitochondria death/ survival signaling pathways in cardiotoxicity induced by anthracyclines and anticancer-targeted therapies. Biochem Res. Int. 2012; 951539. CrossRef  
  127. Sterba M, Popelová O, Lenco J, Fucíková A, Brcáková E, Mazurová Y, Jirkovský E, Simunek T, Adamcová M, Micuda S, Stulík J, Geršl V. Proteomic insights into chronic anthracycline cardiotoxicity. J Mol Cell Cardiol. 2011;50(5):849-62. CrossRef PubMed
  129. Drevitska T, Dosenko V, Nagibin V, Mankovska I. HIF- 1a, HIF2a, HIF3a and HIF1ß mRNA expression changes in different tissues under intermittent hypoxic training/ In: Intermittent Hypoxia. From Molecular Mechanisms to Clinical Applications. Eds: Lei Xi & Tatiana V. Serebrovskaya/ Nova Science Publishers. 2009;Chapter 21: 419-36.
  131. Drevytska T, Gavenauskas B, Drozdovska S, Nosar V, Dosenko V, Mankovska I. HIF-3a mRNA expression changes in different tissues and their role in adaptation to intermittent hypoxia and physical exercise. Pathophysiology. 2012; 19 (3):205-14. CrossRef PubMed
  133. Mankovska IM, Drevitska TI, Dosenko VE. Role of mRNA Expression of Hypoxia Inducible Factor Subunits in Adaptation to Hypoxia. In: Adaptation Biology and Medicine (Vol.6: Cell Adaptations and Challenges). Eds: P.Wang et al. Narosa Publishing House. 2011; 279-92. PubMed
  135. Drevytska T, Gavenauskas B, Drozdovska S, Nosar V, Dosenko V, Mankovska I. HIF-3a mRNA expression changes in different tissues and their role in adaptation to intermittent hypoxia and physical exercise. Pathophysiology. 2012;19(3):205-14. CrossRef PubMed
  137. Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR. Inducrion of HIF-1 expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2-signaling, prolyl hydroxylases, and mTOR. J Cell Physiol. 2008;217:674-85. CrossRef PubMed PubMedCentral
  139. Portnichenko VI, Portnychenko AG Dosenko VE, Sidorenko AM. Expression of HIF-1a and HIF-3a in the lungs and metabolic changes during intermittent hypoxia in rats of different ages. Achievements Clin Exper Med. 2010; 2: 3-8.
  141. Portnichenko VI, Nosar' VI, Portnichenko AG, Drevitskaia TI, Sidorenko AM, Man'kovskaia IN. Phase changes in energy metabolism during periodic hypoxia. Fiziol Zh. 2012;58(4):3-12. [Russian]. PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.