Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2014; 60(6): 3-9


A.V. Kotsuruba1, B.S. Kopjak1, V.F. Sagach1, A.V. Shcherbakov2, N.M. Zholobak2,3, N.JA. Spivak2,3

  1. Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine
  2. Institute of microbiology and virusology NAS of Ukraine, Kyiv, Ukraine
  3. LCL «Diaprof», Ukraine


In experiments in vivo and in vitro we investigated the effect of cerium oxide nanoparticles on the stability of red blood cells of old rats. The analysis of the kinetic curves of acid hemolysis caused by the penetration of protons into the matrix of erythrocytes in experiments in vivo showed a significant reduction in the so-called stability index, the times of duration of complete hemolysis, the time of hemolysis maximum, the fate of labile “old” and, conversely, decreased the fate of “young” erythrocytes in old animals bluud compared with adults. Introduction to old rats per os for 14 days 0.1 mg / kg of cerium oxide nanoparticles fully restored resistance of erythrocytes to acid hemolysis. Cerium oxide nanoparticles decreased in circulation the fate of labile “old” erythrocytes and, conversely, significantly increased the fate of “young” stabile erythrocytes. Experiments in vitro showed no direct hemolytic action of cerium oxide nanoparticles at concentrations – 10-3 M - 10-12 M.

Keywords: erythrocytes, acid hemolysis, old rats, ceriumoxide nanoparticles.


  1. Lang F, Quadri SM. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif.2012;33(1-3):125-30. CrossRef PubMed
  3. Lang F, Abed M, Lang E, Foller M. Oxidative stress and suicidal erythrocyte death. Antioxid Redox Signal. 2014;21(1):138-53. CrossRef PubMed
  5. Renha-Silva N, Firmino CB, de Freitas Reis FG, da Costa Huss JC, de Souza TM, de Freitas MV, Netto RC Influence of age on the stability of human erythrocyte membranes . Mech Ageing Dev. 2007;128(7-8):444-9. CrossRef PubMed
  7. Ghashghaeinia M. Cluitmans JC, Akel A, Dreischer P, Toulany M, Koberie M et al. The impact of erythrocyte age on eryptosis. Br J Haematol. 2012;157(5):606-14. CrossRef PubMed
  9. Wang Y, Liu XS Mechanisms of aging and programmed death of erythrocytes. Zhongguo Shi Yan Xue Ye Xue Za Zhi . 2014; 22(4):1124-8. PubMed
  11. Qadri SM, Foller M, Lang F. Inhibition of suicidal erythrocyte death by resveratrol. Life Sci. 2009; 85(1-2):33-8. CrossRef PubMed
  13. Fedorov SM, Baziljuk OV, Kotsuruba AV, Korkach YuP, Sagach VF. Magnetic-Laser influence on the system of nitric oxide and contractile activity of smooth muscles of rat aorta under hypertension. Fiziologichnyj Zhurnal. 2012; 58 (6):36–47. [Ukrainian]. PubMed
  15. Sagach VF, Baziljuk OV, Stepanenko LG, Korkach YuP, Kotsuruba AV. Enalapril action on nitric oxide synthesis, oxidative metabolism and vascular tone of aging rat. Fiziol Zh. . 2007;53(4):15–26. [Ukrainian].
  17. Prokopenko LG, Siplivaja LE. Erythrocytes as modulators of immunic reactions. Usp Physiol Nauk . 1992; 23(4):89- 106. [Russian].
  19. Goodall AH, Fisher D, Lucy JA. Cell fusion, haemolysis and mitochondrial swelling induced by retinol and derivaties . Biochem. Biophys. Acta.1980; 595(1): 9-14. CrossRef  
  20. Mykhaylyk O, Kotsuruba A, Dudchenko N, Tozok G. Signal transduction by erythrocytes on specific binding of doxorubisin inmobilized on nano dispersed magnetite.A Magn Magn Mat. 2005; 293(4): 464-72. CrossRef  
  21. Sagach VF, Korkach YuP, Kotsuruba AV, Rudyk OV, Vavilova GL. Mitochondrial permeability transition pore opening inhibition by ecdysterone in heart mitochondria of aging rats. Fiziol Zh. 2008; 54(4):3–10. [Ukrainian].
  23. Cai X, Seal S, McGinnis JF Sustained inhibition of neovascularization in vldlr-/- mice following intravitreal injection of cerium oxide nanoparticles and the role of the ASK1-P38/JNK-NF-?B pathway. Biomaterials. 2014; 35(1):249-58. CrossRef PubMed PubMedCentral
  25. Geraets L, Oomen AG, Schroeter JD, Coleman VA, Cassee FR. Tissue distribution of inhaled micro- and nano-sized cerium oxide particles in rats: results from a 28-day exposure study. Toxicol Sci. 2012; 127(2):463-73. CrossRef PubMed
  27. Ciofani G, Genchi GG, Mazzolai B, Mattoli V. Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim Biophys Acta. 2014; 1840(1):495-506. CrossRef PubMed
  29. Cheng G, Guo W, Han L, Chen E, Kong L, Wang L, at al. Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol In Vitro. 2013; 27(3): 1082-88. CrossRef PubMed
  31. Terskov IA, Gittelzon II. Method chimicheskich (kislotnich) erythrogram. Biophysika. 1957; 2(2) :259-66. [Russian].
  33. Zavodnjuk I, Piletskaja TP. Kislotnij lisis erythrocytov cheloveka. Biophysika.1997; 42(5) : 106-12. [Russian].
  35. Anderson DR, Davis JL, Carrawey KL. Calcium-promotedchanges of the human erythrocyte membrane. J. Biol.Chem. 1977; 252(19): 6617-23. PubMed
  37. Petrov V, Lijnen P. Regulation of human erythrocute Na+/H+ exchange by soluble and particulate guanylat cyclase.Am. J. Physiol. 1996; 271(8):C1556-64. CrossRef PubMed
  39. Iukacs GL, Kapus A, Nanda A. Proton conductance of the plasma membrane: properties, regulation and functional role. Am. J. Physiol. 1993; 265(l) :C3-14.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2021.